Skip to main content

Advertisement

Log in

The Effect of Severity Factor on the Release of Xylose and Phenolics from Rice Husk and Rice Straw

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The objective of this work was to compare the effects of dilute acid hydrolysis on two major residues of rice crop cultivation, namely, rice straw and rice husk and to find the optimum hydrolysis parameters for both residues. The hydrolysis conditions were expressed by a severity factor (SF) in the range of −0.2 to 2.01. The xylose release reached maximum at SF of 1.96 for rice straw and 1.88 for rice husk hydrolysates. The glucose release and by-products productions were higher in the rice straw hydrolysate than rice husk hydrolysate over the entire range of SF. Response surface methodology was used for the optimization of the hydrolysis process. The optimum reaction temperature, reaction time, and acid concentration were 122 °C, 60 min and 2.95 % of acid concentration, respectively, for rice straw; the corresponding values for rice husk were 127 °C, 60 min and 2.6 % of acid concentration. Under these conditions, 88.1 % of xylose yield and 1.98 g/g of selectivity for rice straw and 87.7 % of xylose yield and 11.8 g/g of selectivity for rice husk were achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Binod, P., Sindhu, R., Singhania, R.R., Vikram, S., Devi, L., Nagalakshmi, S., Kurien, N., Sukumaran, R.K., Pandey, A.: Bioethanol production from rice straw: an overview. Bioresour. Technol. 101, 4767–4774 (2010)

    Article  Google Scholar 

  2. Dagnino, E.P., Chamorro, E.R., Romano, S.D., Felissia, F.E., Area, M.C.: Optimization of the acid pretreatment of rice hulls to obtain fermentable sugars for bioethanol production. Ind. Crop. Prod. 42, 363–368 (2013)

    Article  Google Scholar 

  3. TUIK: www.tuik.gov.tr (2014)

  4. Koopmans, A., Koppejan, J.: Agricultural and forest residues—generation, utilization and availability. In: Paper Presented at the Regional Consultation on Modern Applications of Biomass Energy, Kuala Lumpur. http://www.fao.org/docrep/006/AD576E/ad576e00.pdf (1997)

  5. Elci, S., Kolsarici, O., Gecit, H.: Fieldcrops Lecture Book. Ankara University, Ankara (1994)

    Google Scholar 

  6. Nour, A.M.: Rice straw and rice hulls in feeding ruminants in Egypt. Department of Animal Production, Faculty of Agriculture, Alexandria University, Alexandria. http://www.fao.org/wairdocs/ilri/x5494e/x5494e07.htm (2003)

  7. Contreras, L.M., Schelle, H., Sebrango, C.R., Pereda, I.: Methane potential and biodegradability of rice straw, rice husk and rice residues from the drying process. Water Sci. Technol. 65, 1142–1149 (2012)

    Article  Google Scholar 

  8. Li, Y., Ding, X., Guo, Y., Rong, C., Wang, L., Qu, Y., Ma, X., Wang, Z.: A new method of comprehensive utilization of rice husk. J. Hazard. Mater. 186, 2151–2156 (2011)

    Article  Google Scholar 

  9. Saha, B.C., Iten, L.B., Cotta, M.A., Wu, Y.V.: Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochem. 40, 3693–3700 (2005)

    Article  Google Scholar 

  10. Lee, J.W., Jeffries, T.W.: Efficiencies of acid catalysts in the hydrolysis of lignocellulosic biomass over a range of combined severity factors. Bioresour. Technol. 102, 5884–5890 (2011)

    Article  Google Scholar 

  11. Lloyd, T.A., Wyman, C.E.: Combined sugar yields for dilute sulfuric acid pretreatment of corn stover followed by enzymatic hydrolysis of the remaining solids. Bioresour. Technol. 96, 1967–1977 (2005)

    Article  Google Scholar 

  12. Qin, L., Liu, Z.H., Li, B.Z., Dale, B.E., Yuan, Y.J.: Mass balance and transformation of corn stover by pretreatment with different dilute organic acids. Bioresour. Technol. 112, 319–326 (2012)

    Article  Google Scholar 

  13. Canettieri, E.V., Moraes Rocho, G.J., Carvalho Jr., K.A., Almeida e Silva, J.B.: Optimization of acid hydrolysis from the hemicellulosic fraction of Eucalyptus grandis residue using response surface methodology. Bioresour. Technol. 98, 422–428 (2007)

    Article  Google Scholar 

  14. Rahman, S.H.A., Choudhury, J.P., Ahmad, A.L., Kamaruddin, A.H.: Optimization studies on acid hydrolysis of oil palm empty fruit bunch fiber for production of xylose. Bioresour. Technol. 98, 554–559 (2007)

    Article  Google Scholar 

  15. Castro, E., Diaz, M.J., Cara, C., Ruiz, E., Romero, I., Moya, M.: Dilute acid pretreatment of rapeseed straw for fermentable sugar generation. Bioresour. Technol. 102, 1270–1276 (2011)

    Article  Google Scholar 

  16. Jeong, T.S., Oh, K.K.: Optimization of fermentable sugar production from rape straw through hydrothermal acid pretreatment. Bioresour. Technol. 102, 9261–9266 (2011)

    Article  Google Scholar 

  17. Panagiotopoulos, I.A., Lignos, G.D., Bakker, R.R., Koukios, E.G.: Effect of low severity dilute-acid pretreatment of barley straw and decreased enzyme loading hydrolysis on the production of fermentable substrates and the release of inhibitory compounds. J. Clean. Prod. 32, 45–51 (2012)

    Article  Google Scholar 

  18. Kim, S.B., Lee, J.H., Oh, K.K., Lee, S.J., Lee, J.Y., Kim, J.S., Kim, S.W.: Dilute acid pretreatment of barley straw and its saccharification and fermentation. Biotechnol. Bioprocess Eng. 16, 725–732 (2011)

    Article  Google Scholar 

  19. Akpınar, Ö., Sabanci, S., Levent, O., Sayaslan, A.: Evaluation of antioxidant activity of dilute acid hydrolysate of wheat straw during xylose production. Ind. Crops Prod. 40, 39–44 (2012)

    Article  Google Scholar 

  20. Liavoga, A.B., Bian, Y., Seib, P.A.: Release of d-xylose from wheat straw by acid and xylanase hydrolysis and purification of xylitol. J. Agric. Food Chem. 55, 7758–7766 (2007)

    Article  Google Scholar 

  21. Zhang, H., Zhao, X., Ding, X., Lei, H., Chen, X.: A study on the consecutive preparation of d-xylose and pure superfine silica from rice husk. Bioresour. Technol. 101, 1263–1267 (2010)

    Article  Google Scholar 

  22. Roberto, I.C., Mussatto, S.I., Rodrigues, R.C.L.B.: Dilute-acid hydrolysis for optimization of xylose recovery from rice straw in a semi-pilot reactor. Ind. Crop Prod. 17, 171–176 (2003)

    Article  Google Scholar 

  23. Hsu, T., Guo, G., Chen, W., Hwang, W.: Effect of dilute acid pretreatment of rice straw on structural properties and enzymatic hydrolysis. Bioresour. Technol. 101, 4907–4913 (2010)

    Article  Google Scholar 

  24. Kim, S.B., Lee, S.J., Jang, E.J., Han, S.O., Park, C., Kim, S.W.: Sugar recovery from rice straw by dilute acid pretreatment. J. Ind. Eng. Chem. 18, 183–187 (2012)

    Article  Google Scholar 

  25. Yin, F., Hwang, A., Yu, N., Hao, P.: Hydrolysis of agricultural wastes. In: Proceeding of Resource Recovery Solid Wastes Conference, pp. 447–456 (1982)

  26. Valdes, A., Planes, L.R.: Study of the hydrolysis of rice straw with sulfuric acid under moderate conditions. Rev. Cienc. Quim. 14, 11–19 (1983)

    Google Scholar 

  27. Moure, A., Pazos, M., Medina, I., Dominguez, H., Parajo, J.C.: Antioxidant activity of extracts produced by solvent extraction of almond shells acid hydrolysates. Food Chem. 101, 193–201 (2007)

    Article  Google Scholar 

  28. Kabel, M.A., Bos, G., Zeevalking, J., Voragen, A.G.J., Schols, H.A.: Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol. 98, 2034–2042 (2007)

    Article  Google Scholar 

  29. ASTM: Annual Book of ASTM Standards 04.09. American Society for Testing and Materials, Philadelphia (1993)

    Google Scholar 

  30. Ehrman, T.: Standard method for determination of total solids in biomass. In: Laboratory Analytical Procedure No. 001. National Renewable Energy Laboratory, Golden (1994)

  31. Templeton, D., Ehrman, T.: Determination of acid-insoluble lignin in biomass. In: Laboratory Analytical Procedure No. 003. National Renewable Energy Laboratory, Golden (1995)

  32. Ehrman, T.: Standard method for ash in biomass. In: Laboratory Analytical Procedure No. 005. National Renewable Energy Laboratory, Golden (1994)

  33. Melton, L.D., Smith, B.G.: Determination of the uronic acid content of plant cell walls using a colorimetric assay. In: Wrolstad, R.E., Acree, T.E., Decker, E.A., Penner, M.H., Reid, D.S., Schwartz, S.J., Shoemaker, C.F., Smith, D., Sporns, P. (eds.) Current Protocols in Food Analytical Chemistry. Wiley, New York (2002)

    Google Scholar 

  34. Browning, B.L.: Methods of Wood Chemistry, pp. 589–590. Inter-Science Publishers, New York (1967)

    Google Scholar 

  35. Ligero, P., van der Kolk, J.C., de Vega, A., van Dam, J.E.G.: Production of xylo-oligosaccharides from Miscanthus x giganteus by autohydrolysis. Bioresources 6, 4417–4429 (2011)

    Google Scholar 

  36. William, S.: Furfural in distilled liquors. In: AOAC Official Methods of Analysis, 0.097, pp. 185. Arlington, VA (1984)

  37. Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am. J. Enol. Vitic. 16, 144–158 (1965)

    Google Scholar 

  38. Benzie, I.F.F., Strain, J.J.: The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay. Anal. Biochem. 239, 70–76 (1996)

    Article  Google Scholar 

  39. Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., Rice-Evans, C.: Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 26, 1231–1237 (1999)

    Article  Google Scholar 

  40. Balconi, B.D.: Production of levulynic acid trough acid hydrolysis of rice husk. Master Thesis, University Federal de Santa Maria, Natural and Exact Sciences Center (2010)

  41. Diel Rambo, M.K.: Use of rice husk for xylitol and silica gel production. Master Thesis, University Federal de Santa Maria, Natural and Exact Sciences Center (2009)

  42. Kargbo, F.R., Xing, J., Zhang, Y.: Property analysis and pretreatment of rice straw for energy use in grain drying: a review. ABJNA 1, 195–200 (2010)

    Article  Google Scholar 

  43. Karimi, K., Kheradmandinia, S., Taherzadeh, M.J.: Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass Bioenergy 30, 247–253 (2006)

    Article  Google Scholar 

  44. Guo, G.L., Chen, W.H., Chen, W.H., Men, L.C., Hwang, W.S.: Characterization of dilute acid pretreatment of silvergrass for ethanol production. Bioresour. Technol. 99, 6046–6053 (2008)

    Article  Google Scholar 

  45. Parajo, J.C., Dominguez, H., Dominguez, J.M.: Biotechnological production of xylitol. Part 3: operation in culture medıa made from lignocellulose hydrolysates. Bioresour. Technol. 66, 25–40 (1998)

    Article  Google Scholar 

  46. Prior, R.L., Wu, X., Schaich, K.: Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J. Agric. Food Chem. 53, 4290–4302 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Gaziosmanpasa University Research Fund (2013/47).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozlem Akpinar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Temiz, E., Akpinar, O. The Effect of Severity Factor on the Release of Xylose and Phenolics from Rice Husk and Rice Straw. Waste Biomass Valor 8, 505–516 (2017). https://doi.org/10.1007/s12649-016-9608-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9608-z

Keywords

Navigation