Waste and Biomass Valorization

, Volume 8, Issue 1, pp 129–139 | Cite as

Recent Achievements in the Production of Biogas from Microalgae

  • Enrica UggettiEmail author
  • Fabiana Passos
  • Maria Solé
  • Marianna Garfí
  • Ivet Ferrer


Microalgae are nowadays regarded as a potential biomass feedstock to help reducing our dependence on fossil fuels for transportation, electricity and heat generation. Besides, microalgae have been widely investigated as a source of chemicals, cosmetics and health products, as well as animal and human feed. Among the cutting-edge applications of microalgae biomass, anaerobic digestion has shown promising results in terms of (bio)methane production. The interest of this process lies on its potential integration within the microalgae biorefinery concept, providing on the one hand a source of bioenergy, and on the other hand nutrients (nitrogen, phosphorus and CO2) and water for microalgae cultivation. This article reports the main findings in the field, highlighting the options to increase the (bio)methane production of microalgae (i.e. pretreatment and co-digestion) and bottlenecks of the technology. Finally, energy, economic and environmental aspects are considered.


Microalgal biomass Anaerobic digestion Biogas Co-digestion Pretreatment 



Biochemical methane potential


Combined heat and power






Carbon dioxide


Chemical oxygen demand


Energy input


Energy output


Hydraulic retention time


Life cycle assessment


Life cycle costing


Long chain fatty acids


Organic loading rate


Scanning electronic microscope


Transmission electronic microscope


Volatile solids


Volatile fatty acids



Authors want to thank the Spanish Ministry of Science and Innovation (MICINN) for financial support to this project (CTQ2014-57293-C3-3-R). Fabiana Passos appreciates her Post-Doctorate scholarship funded by the National Council for Scientific and Technological Development (CNPq) from the Brazilian Ministry of Science, Technology and Innovation. Marianna Garfí is grateful to Ministry of Economy and Competitiveness (Spain) (Plan Nacional de I+D+i 2008-2011, Subprograma Juan de la Cierva (JDC) 2012). Enrica Uggetti is grateful to the Ministry of Economy and Competitiveness for her scholarship (IJCI-2014-21594).


  1. 1.
    Carrère, H., Dumas, C., Battimelli, A., Batstone, D.J., Delgenès, J.P., Steyer, J.P., Ferrer, I.: Pretreament methods to improve sludge anaerobic degradability: a review. J. Hazard. Mat. 183, 1–15 (2010)CrossRefGoogle Scholar
  2. 2.
    Hendriks, A.T.W.M., Zeeman, G.: Pretreaments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)CrossRefGoogle Scholar
  3. 3.
    Passos, F., Uggetti, E., Carrere, H., Ferrer, I.: Pretreatment of microalgae to improve biogas production: a review. Bioresour. Technol. 172, 403–412 (2014)CrossRefGoogle Scholar
  4. 4.
    Sorensen, B.: Renewable Energy: Its Physics, Engineering, Environmental Impacts, Economics & Planning, 2nd edn. Academic Press, Millbrae (2000)Google Scholar
  5. 5.
    Wilhelm, C., Jakob, T.: From photons to biomass and biofuels: evaluation of different strategies for the improvement of algal biotechnology based on comparative energy balances. Appl. Biotechnol. Microbiol. 92, 909–919 (2011)CrossRefGoogle Scholar
  6. 6.
    González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P.: Impact of microalgae characteristics on their conversion to biofuel. Part II: focus on biomethane production. Biofuel Bioprod. Biorefin. 6, 205–218 (2012)CrossRefGoogle Scholar
  7. 7.
    González-Fernández, C., Sialve, B., Molinuevo-Salces, B.: Anaerobic digestion of microalgal biomass: challenges, opportunities and research needs. Bioresour. Technol. 198, 896–906 (2015)CrossRefGoogle Scholar
  8. 8.
    Sialve, B., Bernet, N., Bernard, O.: Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 27, 409–416 (2009)CrossRefGoogle Scholar
  9. 9.
    Ward, A.J., Lewis, D.M., Green, F.B.: Anaerobic digestion of algae biomass: a review. Algal Res 5, 204–214 (2014)CrossRefGoogle Scholar
  10. 10.
    Yang, Z., Guo, R., Xu, X., Xiaolei, F., Shengjun, L.: Hydrogen and methane production from lipid-extracted microalgal biomass residues. Int. J. Hydrog. Energy 36, 3465–3470 (2011)CrossRefGoogle Scholar
  11. 11.
    Ramos-Suárez, J.L., Cuadra, F.G., Acién, F.G., Carreras, N.: Benefits of combing anaerobic digestion and amino acid extraction from microalgae. Chem. Eng. J. 258, 1–9 (2014)CrossRefGoogle Scholar
  12. 12.
    Traviesco, L., Sanchez, E.P., Benitez, F., Conde, J.L.: Arthrospira sp. intensive cultures for food and biogas purification. Biotechnol. Lett. 15, 1091–1094 (1993)CrossRefGoogle Scholar
  13. 13.
    Doušková, I., Kaštánek, F., Maléterová, Y., Kaštánek, P., Doucha, J., Zachleder, V.: Utilization of distillery stillage for energy generation and concurrent production of valuable microalgal biomass in the sequence: biogas-cogeneration-microalgae-products. Energ. Convers. Manag. 51, 606–611 (2010)CrossRefGoogle Scholar
  14. 14.
    Uggetti, E., Sialve, B., Latrille, E., Steyer, J.P.: Anaerobic digestate as substrate for microalgae culture: the role of ammonium concentration on the microalgae productivity. Bioresour. Technol. 152, 437–443 (2014)CrossRefGoogle Scholar
  15. 15.
    Chen, R., Li, R., Deitz, L.: Yan Liu, R., Stevenson, J., Liao, X.: freshwater algal cultivation with animal waste for nutrient removal and biomass production. Biomass Bioenergy 39, 128–138 (2012)CrossRefGoogle Scholar
  16. 16.
    Collet, P., Hélias, A., Lardon, L., Ras, M., Goy, R.A., Steyer, J.P.: Life-cycle assessment of microalgae culture coupled to biogas production. Bioresour. Technol. 102, 207–214 (2011)CrossRefGoogle Scholar
  17. 17.
    Ras, M., Lardon, L., Sialve, B., Steyer, J.P.: Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour. Technol. 102, 200–206 (2011)CrossRefGoogle Scholar
  18. 18.
    Passos, F., Ferrer, I.: Microalgae conversion to biogas: thermal pretreatment contribution on net energy production. Environ. Sci. Technol. 48(12), 7171–7178 (2014)CrossRefGoogle Scholar
  19. 19.
    Zamalloa, C., Boon, N., Verstraete, W.: Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl Energ 92, 733–738 (2012)CrossRefGoogle Scholar
  20. 20.
    Carrere, H., Antonopoulou, G., Affes, R., Passos, F., Battimelli, A., Lyberatos, G., Ferrer, I.: Review of feedstock pretreatment strategies for improved anaerobic digestion: from lab-scale research to full-scale application. Bioresour. Technol. 199, 386–397 (2016)CrossRefGoogle Scholar
  21. 21.
    Chen, P.H., Oswald, W.J.: Thermochemical treatment for algal fermentation. Environ. Int. 24(8), 889–897 (1998)CrossRefGoogle Scholar
  22. 22.
    Kinnunen, V., Craggs, R., Rintala, J.: Influence of temperature and pretreatments on the anaerobic digestion of wastewater grown microalgae in a laboratory-scale accumulating volume reactor. Water Res. 57, 247–257 (2014)CrossRefGoogle Scholar
  23. 23.
    Schwede, S., Rehman, Z.U., Gerber, M., Theiss, C., Span, R.: Effects of thermal pretreatment on anaerobic digestion of Nannocloropsis salina biomass. Bioresour. Technol. 143, 505–511 (2013)CrossRefGoogle Scholar
  24. 24.
    Ometto, F., Whitton, R., Coulon, F., Jefferson, B., Villa, R.: Improving the energy balance of an integrated microalgal wastewater treatement process. Waste Biomass Valor 5, 245–253 (2014)CrossRefGoogle Scholar
  25. 25.
    Passos, F., Ferrer, I.: Influence of hydrothermal pretreatment on microalgal biomass anaerobic digestion and bioenergy production. Water Res. 68, 364–373 (2015)CrossRefGoogle Scholar
  26. 26.
    Keymar, P., Ruffell, I., Pratt, S., Lant, P.: High pressure thermal hydrolysis as pre-treatment to increase the methane yield during anaerobic digestion of microalgae. Bioresour. Technol. 131, 128–133 (2013)CrossRefGoogle Scholar
  27. 27.
    Alzate, M.E., Muñoz, R., Rogalla, F., Fdz-Polanco, F., Pérez-Elvira, S.I.: Biochemical methane potential of microalgae: influence to substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour. Technol. 123, 488–494 (2012)CrossRefGoogle Scholar
  28. 28.
    Passos, F., Mariné-Hernández, M., Garcia, J., Ferrer, I.: Long-term anaerobic digestion of microalgae grown in HRAP for wastewater treatment. Effect of microwave pretreatment. Water Res. 49, 351–359 (2014)CrossRefGoogle Scholar
  29. 29.
    Passos, F., Astals, S., Ferrer, I.: Anaerobic digestion of microalgal biomass after ultrasound pretreatment. Waste Manag 34, 2098–2103 (2014)CrossRefGoogle Scholar
  30. 30.
    Passos, F., Carretero, J., Ferrer, I.: Comparing pretreatment methods for improving microalgae anaerobic digestion: thermal, hydrothermal, microwave and ultrasound. Chem. Eng. J. 279, 667–672 (2015)CrossRefGoogle Scholar
  31. 31.
    Mahdy, A., Mendez, L., Ballesteros, M., González-Fernández, C.: Protease pretreated Chlorella vulgaris biomass bioconversion to methane via semi-continuous anaerobic digestion. Fuel 158, 35–41 (2015)CrossRefGoogle Scholar
  32. 32.
    Passos, F., Hom-Diaz, A., Blanquez, P., Vicent, T., Ferrer, I.: Improving biogas production from microalgae by enzymatic pretreatment. Biores. Technol. 199, 347–351 (2016)CrossRefGoogle Scholar
  33. 33.
    Mendez, L., Mahdy, A., Timmers, R.A., Ballesteros, M., González-Fernández, C.: Enhancing methane production of Chlorella vulgaris via thermochemical pretreatments. Bioresour. Technol. 149, 136–141 (2013)CrossRefGoogle Scholar
  34. 34.
    Yen, H.W., Brune, D.E.: Anaerobic co-digestion of algal sludge and waste paper to produce methane. Biores. Technol. 98, 130–134 (2007)CrossRefGoogle Scholar
  35. 35.
    Ramos-Suárez, J.L., Martínez, A., Carreras, N.: Optimization of the digestion process of Scenedesmus sp. and Opuntia maxima for biogas production. Energy Conv. Manag. 88, 1263–1270 (2014)CrossRefGoogle Scholar
  36. 36.
    Park, S., Li, Y.: Evaluation of methane production and macronutrient degradation in the anaerobic co-digestion of algae biomass residue and lipid waste. Bioresour. Technol. 111, 42–48 (2012)CrossRefGoogle Scholar
  37. 37.
    Ehimen, E.A., Connaughton, S., Sun, Z., Carrington, G.: Energy recovery from lipid extracted, transesterified and glycerol codigested microalgae biomass. GCB Bioenerg. 1, 371–381 (2009)CrossRefGoogle Scholar
  38. 38.
    Mahdy, A., Mendez, L., Ballesteros, M., González-Fernández, C.: Algaculture integration in conventional wastewater treatment plants: anaerobic digestion comparison of primary and secondary sludge with microalgae biomass. Bioresour. Technol. 184, 236–244 (2015)CrossRefGoogle Scholar
  39. 39.
    Wang, M., Park, C.: Investigation of anaerobic digestion of Chlorella sp. and Micractinium sp. grown in high-nitrogen wastewater and their co-digestion with waste activated sludge. Biomass Bioenerg 80, 30–37 (2015)CrossRefGoogle Scholar
  40. 40.
    Olsson, J., Feng, X.M., Ascue, J., Gentili, F.G., Shabiimam, M.A., Nehrenheim, E., Thorin, E.: Co-digestion of cultivated microalgae and sewage sludge from municipal waste water treatment. Biores. Technol. 171, 203–210 (2014)CrossRefGoogle Scholar
  41. 41.
    González-Fernández, C., Molinuevo-Salces, B., García-González, M.C.: Evaluation of anaerobic codigestion of microalgal biomass and swine manure via response surface methodology. Appl. Energy 88, 3448–3453 (2011)CrossRefGoogle Scholar
  42. 42.
    Astals, S., Musenze, R.S., Bai, X., Tannock, S., Tait, S., Pratt, S., Jensen, P.D.: Anaerobic co-digestion of pig manure and algae: impact of intracellular algal products recovery on co-digestion performance. Bioresour. Technol. 181, 97–104 (2015)CrossRefGoogle Scholar
  43. 43.
    Mairet, F., Bernard, O., Ras, M., Lardon, L., Steyer, J.-P.: Modeling anaerobic digestion of microalgae using ADM1. Bioresour. Technol. 102(13), 6823–6829 (2011)CrossRefGoogle Scholar
  44. 44.
    Markou, G., Angelidaki, I., Georgakakis, D.: Carbohydrate-enriched cyanobacterial biomass as feedstock for bio-methane production through anaerobic digestion. Fuel 111, 872–879 (2013)CrossRefGoogle Scholar
  45. 45.
    Mussgnug, J.H., Klassen, V., Schlüter, A., Kruse, O.: Microalgae as substrates for fermentative biogas production in a combined bio-refinery concept. J. Biotechnol. 150(1), 51–56 (2010)CrossRefGoogle Scholar
  46. 46.
    Delrue, F., Setier, P.A., Sahut, A., Cournac, C., Roubaud, A., Peltier, G., Froment, A.K.: An economic, sustainability, and energetic model of biodiesel production from microalgae. Bioresour. Technol. 111, 191–200 (2012)CrossRefGoogle Scholar
  47. 47.
    Resurreccion, E.P., Colosi, L.M., White, M.A., Clarens, A.F.: Comparison of algae cultivation methods for bioenergy production using a combined life cycle assessment and life cycle costing approach. Bioresour. Technol. 126, 298–306 (2012)CrossRefGoogle Scholar
  48. 48.
    Klein-Marcuschamer, D., Chisti, Y., Benemann, J.R., Lewis, D.M.: A matter of detail: assessing the true potential of microalgal biofuels. Biotechnol. Bioeng. 110(9), 2317–2322 (2013)CrossRefGoogle Scholar
  49. 49.
    Slade, R., Bauen, A.: Micro-algae cultivation for biofuels: cost, energy balance, environmental impacts and future prospects. Biomass Bioenerg. 53, 29–38 (2013)CrossRefGoogle Scholar
  50. 50.
    Alabi, A.O., Tampier, M., Bibeau, E.: Microalgae technologies and processes for bioenergy production in British Columbia: current technology, suitability and barriers to implementation. Final Report submitted to the British Columbia Innovation Council, pp. 1–88 (2009)Google Scholar
  51. 51.
    Montingelli, M.E., Tedesco, S., Olabi, A.G.: Biogas production from algal biomass: a review. Renew. Sust. Energy Rev. 43, 961–972 (2015)CrossRefGoogle Scholar
  52. 52.
    Park, J., Craggs, R., Shilton, A.: Wastewater treatment high rate algal ponds for biofuel production. Bioresour. Technol. 102, 35–42 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Enrica Uggetti
    • 1
    Email author
  • Fabiana Passos
    • 1
    • 2
  • Maria Solé
    • 1
  • Marianna Garfí
    • 1
  • Ivet Ferrer
    • 1
  1. 1.GEMMA - Environmental Engineering and Microbiology Research Group, Department of Civil and Environmental EngineeringUniversitat Politècnica de Catalunya·BarcelonaTechBarcelonaSpain
  2. 2.Environmental and Chemical Technology Group, Department of ChemistryUniversidade Federal de Ouro PretoOuro PretoBrazil

Personalised recommendations