Waste and Biomass Valorization

, Volume 8, Issue 3, pp 911–921 | Cite as

Co-pyrolysis of Rice Husk with Underutilized Biomass Species: A Sustainable Route for Production of Precursors for Fuels and Valuable Chemicals

  • Isah Yakub MohammedEmail author
  • Chun Hsion Lim
  • Feroz Kabir Kazi
  • Suzana Yusup
  • Hon Loong Lam
  • Yousif Abdalla Abakr
Original Paper


In this study, co-pyrolysis of rice husk with underutilized biomass, Napier grass and sago waste was carried out in a fixed bed reactor at 600 °C, 30 °C/min and 5 L/min nitrogen flowrate. Two-phase bio-oil (organic and aqueous) was collected and characterized using standard analytical techniques. 34.13–45.55 wt% total boil-oil yield was recorded using assorted biomass compared to pure risk husk biomass with 31.51 wt% yield. The organic phase consist mainly benzene derivatives with higher proportion in the oil from the co-pyrolysis process relative to the organic phase from the pyrolysis of the individual biomass while the aqueous phase in all cases was predominantly water, acids, ketones, aldehydes, sugars and traces of phenolics. This study has demonstrated a good approach towards increasing valorization of rice husk in a single reaction step for the production of high grade bio-oil, which can be transformed into fuel and valuable chemicals.


Rice husk Napier grass Sago waste Co-pyrolysis Bio-oil Characterization 



The project was supported by the Crops for the Future (CFF) and University of Nottingham under the Grant BioP1-005.


  1. 1.
    Yakub, M.I., Mohamed, S., Danladi, S.U.: Technical and economic considerations of post-combustion carbon capture in a coal fired power plant. Int. J. Adv. Eng. Technol. 7(5), 1549–1581 (2014)Google Scholar
  2. 2.
    Mohammed, I.Y.: Optimization and sensitivity analysis of post-combustion carbon capture using DEA solvent in a coal fired power plant. Int. J. Adv. Eng. Technol. 7(6), 1681–1690 (2015)Google Scholar
  3. 3.
    Mohammed, I.Y., Samah, M., Mohamed, A., Sabina, G.: Comparison of Selexol™ and Rectisol® Technologies in an Integrated Gasification Combined Cycle (IGCC) Plant for Clean Energy Production. Int. J. Eng. Res. 3(12), 742–744 (2014)Google Scholar
  4. 4.
    Report of the Paris Conference on Climate Change (COP21). (2015). Accessed 15 May 2016
  5. 5.
    Aditiya, H.B., Chong, W.T., Mahlia, T.M.I., Sebayang, A.H., Berawi, M.A., Nur, H.: Second generation bioethanol potential from selected Malaysia’s biodiversity biomasses: a review. Waste Manag 47(Part A), 46–61 (2016)CrossRefGoogle Scholar
  6. 6.
    Rachman, A., Rianse, U., Musaruddin, M., Pasolon, Y.: The potential of delivering clean locally available limitless rice husk energy in the Celebes Island Indonesia. Energy Procedia 79, 55–60 (2015)CrossRefGoogle Scholar
  7. 7.
    Pode, R., Diouf, B., Pode, G.: Sustainable rural electrification using rice husk biomass energy: a case study of Cambodia. Renew. Sustain. Energy Rev. 44, 530–542 (2015)CrossRefGoogle Scholar
  8. 8.
    Alias, A.B., Shallcross, D.C., Sharifah, A.S.A.K.: Rice husk combustion evolved gas analysis experiments and modelling. Biomass Bioenergy 78, 36–47 (2015)CrossRefGoogle Scholar
  9. 9.
    Naghizadeh, F., Kadir, M.R.A., Doostmohammadi, A., Roozbahani, F., Iqbal, N., Taheri, M.M., Naveen, S.V., Kamarul, T.: Rice husk derived bioactive glass-ceramic as a functional bioceramic: synthesis, characterization and biological testing. J. Non Cryst. Solids 427, 54–61 (2015)CrossRefGoogle Scholar
  10. 10.
    Mohammed, I.Y., Abakr, Y.A., Kazi, F.K., Yusup, S., Alshareef, I., Chin, S.A.: Pyrolysis of napier grass in a fixed bed reactor: effect of operating conditions on product yields and characteristics. BioResources 10(4), 6457–6478 (2015)CrossRefGoogle Scholar
  11. 11.
    Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012)CrossRefGoogle Scholar
  12. 12.
    Eom, I.Y., Kim, J.Y., Lee, S.M., Cho, T.S., Yeo, H., Choi, J.W.: Comparison of pyrolytic products produced from inorganic-rich and demineralized rice straw (Oryza sativa L.) by fluidized bed pyrolyzer for future biorefinery approach. Bioresour. Technol. 128, 664–672 (2012)CrossRefGoogle Scholar
  13. 13.
    Sharma, A., Rao, R.: Kinetics of pyrolysis of rice husk. Bioresour. Technol. 67(1), 53–59 (1999)CrossRefGoogle Scholar
  14. 14.
    Ji-Lu, Z.: Bio-oil from fast pyrolysis of rice husk: yields and related properties and improvement of the pyrolysis system. J. Anal. Appl. Pyrolysis 80(1), 30–35 (2007)CrossRefGoogle Scholar
  15. 15.
    Naqvi, S.R., Uemura, Y., Osman, N.B., Yusup, S., Nuruddin, M.F.: Physiochemical properties of pyrolysis oil derived from fast pyrolysis of wet and dried rice husk in a free fall reactor. Appl. Mech. Mater. 625, 604–607 (2014)CrossRefGoogle Scholar
  16. 16.
    Zhai, M., Wang, X., Zhang, Y., Dong, P., Qi, G.: Characteristics of rice husk tar pyrolysis by external flue gas. Int. J. Hydrog. Energy 40(34), 10780–10787 (2015)CrossRefGoogle Scholar
  17. 17.
    Zhai, M., Wang, X., Zhang, Y., Dong, P., Qi, G., Huang, Y.: Characteristics of rice husk tar secondary thermal cracking. Energy 93(Part 2), 1321–1327 (2015)CrossRefGoogle Scholar
  18. 18.
    Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M.: Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 128, 162–169 (2014)CrossRefGoogle Scholar
  19. 19.
    Qian, Y., Zhang, J., Wang, J.: Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation. Bioresour. Technol. 174, 95–102 (2014)CrossRefGoogle Scholar
  20. 20.
    Zhang, S., Dong, Q., Zhang, L., Xiong, Y.: Effects of water washing and torrefaction on the pyrolysis behavior and kinetics of rice husk through TGA and Py-GC/MS. Bioresour. Technol. 199, 352–361 (2016)CrossRefGoogle Scholar
  21. 21.
    Hsu, C.-P., Huang, A.-N., Kuo, H.-P.: Analysis of the rice husk pyrolysis products from a fluidized bed reactor. Procedia Eng. 102, 1183–1186 (2015)CrossRefGoogle Scholar
  22. 22.
    Naqvi, S.R., Uemura, Y., Yusup, S.: Fast pyrolysis of rice husk in a drop type pyrolyzer for bio-oil and bio-char production. Aust. J. Basic Appl. Sci. 8(5), 294–298 (2014)Google Scholar
  23. 23.
    Naqvi, S.R., Uemura, Y., Yusup, S., Sugiur, Y., Nishiyama, N., Naqvi, M.: The role of zeolite structure and acidity in catalytic deoxygenation of biomass pyrolysis vapors. Energy Procedia 75, 793–800 (2015)CrossRefGoogle Scholar
  24. 24.
    Naqvi, S.R., Uemura, Y., Yusup, S.: Catalytic pyrolysis of paddy husk in a drop type pyrolyzer for bio-oil production: the role of temperature and catalyst. J. Anal. Appl. Pyrolysis 106, 57–62 (2014)CrossRefGoogle Scholar
  25. 25.
    Bakar, M.S.A., Titiloye, J.O.: Catalytic pyrolysis of rice husk for bio-oil production. J. Anal. Appl. Pyrolysis 103, 362–368 (2013)CrossRefGoogle Scholar
  26. 26.
    Mohammed, I.Y., Kazi, F.K., Yusup, S., Alaba, P.A., Sani, Y.M., Abakr, Y.A.: Catalytic intermediate pyrolysis of napier grass in a fixed bed reactor with ZSM-5, HZSM-5 and zinc-exchanged zeolite-A as the catalyst. Energies 9, 246 (2016)CrossRefGoogle Scholar
  27. 27.
    Abnisa, F., Daud, W.M.A.W.: A review on co-pyrolysis of biomass: an optional technique to obtain a high-grade pyrolysis oil. Energy Convers. Manag. 87, 71–85 (2014)CrossRefGoogle Scholar
  28. 28.
    Martínez, J.D., Veses, A., Mastral, A.M., Murillo, R., Navarro, M.V., Puy, N., Artigues, A., Bartrolí, J., García, T.: Co-pyrolysis of biomass with waste tyres: upgrading of liquid bio-fuel. Fuel Process. Technol. 119, 263–271 (2014)CrossRefGoogle Scholar
  29. 29.
    Alvarez, J., Amutio, M., Lopez, G., Bilbao, J., Olazar, M.: Fast co-pyrolysis of sewage sludge and lignocellulosic biomass in a conical spouted bed reactor. Fuel 159, 810–818 (2015)CrossRefGoogle Scholar
  30. 30.
    Wu, Z., Wang, S., Zhao, J., Chen, L., Meng, H.: Thermochemical behavior and char morphology analysis of blended bituminous coal and lignocellulosic biomass model compound co-pyrolysis: effects of cellulose and carboxymethylcellulose sodium. Fuel 171, 65–73 (2016)CrossRefGoogle Scholar
  31. 31.
    Chen, W., Shi, S., Zhang, J., Chen, M., Zhou, X.: Co-pyrolysis of waste newspaper with high-density polyethylene: synergistic effect and oil characterization. Energy Convers. Manag. 112, 41–48 (2016)CrossRefGoogle Scholar
  32. 32.
    Zaafouri, K., Trabelsi, A.B.H., Krichah, S., Ouerghi, A., Aydi, A., Claumann, C.A., Wüst, Z.A., Naoui, S., Bergaoui, L., Hamdi, M.: Enhancement of biofuels production by means of co-pyrolysis of Posidonia oceanica (L.) and frying oil wastes: experimental study and process modeling. Bioresour. Technol. 207, 387–398 (2016)CrossRefGoogle Scholar
  33. 33.
    Mohammed, I.Y., Abakr, Y.A., Kazi, F.K., Yusup, S., Alshareef, I., Chin, S.A.: Comprehensive characterization of napier grass as a feedstock for thermochemical conversion. Energies 8(5), 3403–3417 (2015)CrossRefGoogle Scholar
  34. 34.
    Mohammed, I.Y., Abakr, Y.A., Kabir, F., Yusup, S.: Effects of pretreatments of Napier grass with deionized water, sulfuric acid and sodium hydroxide on pyrolysis oil characteristics. Waste Biomass Valoriz. (2016). doi: 10.1007/s12649-016-9594-1
  35. 35.
    Standard test method for water using volumetric Karl Fischer titration, ASTM E203, ASTM International, West Conshohocken, PA, USA (2001)Google Scholar
  36. 36.
    Mohammed, I.Y., Kazi, F.K., Abakr, Y.A., Yusuf, S., Razzaque, M.A.: Novel method for the determination of water content and higher heating value of pyrolysis oil. BioResources 10(2), 2681–2690 (2015)CrossRefGoogle Scholar
  37. 37.
    Lim, C.H., Mohammed, I.Y., Abakr, Y.A., Kazi, F.K., Yusup, S., Lam, H.L.: Element characteristic tolerance for semi-batch fixed bed biomass pyrolysis. Chem. Eng. Trans. 45, 1285–1290 (2015)Google Scholar
  38. 38.
    Mohammed, I.Y., Abakr, Y.A., Kabir, F., Yusup, S.: Effect of aqueous pretreatment on pyrolysis characteristics of napier grass. J. Eng. Sci. Technol. 10(11), 1487–1496 (2015)Google Scholar
  39. 39.
    Yakub, M.I., Abdalla, A.Y., Feroz, K.K., Suzana, Y., Ibraheem, A., Chin, S.A.: Pyrolysis of oil palm residues in a fixed bed tubular reactor. J. Power Energy Eng. 3(04), 185 (2015)CrossRefGoogle Scholar
  40. 40.
    Bordoloi, N., Narzari, R., Chutia, R.S., Bhaskar, T., Kataki, R.: Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresour. Technol. 178, 83–89 (2015)CrossRefGoogle Scholar
  41. 41.
    Deshmukh, Y., Yadav, V., Nigam, N., Yadav, A., Khare, P.: Quality of bio-oil by pyrolysis of distilled spent of Cymbopogon flexuosus. J. Anal. Appl. Pyrolysis 115, 43–50 (2015)Google Scholar
  42. 42.
    Wang, Z., Wang, F., Cao, J., Wang, J.: Pyrolysis of pine wood in a slowly heating fixed-bed reactor: potassium carbonate versus calcium hydroxide as a catalyst. Fuel Process. Technol. 91(8), 942–950 (2010)CrossRefGoogle Scholar
  43. 43.
    Lin, Y.Y., Zhang, C., Zhang, M.C., Zhang, J.A.: Deoxygenation of bio-oil during pyrolysis of biomass in the presence of CaO in a fluidized-bed reactor. Energy Fuels 24, 5686–5695 (2010)CrossRefGoogle Scholar
  44. 44.
    Couher, C., Commandre, J.M., Salvador, S.: Failure of the component additivity rule to predict gas yields of biomass in flash pyrolysis at 950 C. Biomass Bioenergy 33, 316–326 (2009)CrossRefGoogle Scholar
  45. 45.
    Couher, C., Commandre, J.M., Salvador, S.: Is it possible to predict gas yields of any biomass after rapid pyrolysis at high temperature from its composition in cellulose, hemicelluloses and lignin? Fuel 88, 408–417 (2009)CrossRefGoogle Scholar
  46. 46.
    Mohammad, I.J., Mohammad, G.R., Ashfaque, A.C., Nanjappa, A.: Biofuels production through biomass pyrolysis—a technological review. Energies 5, 4952–5001 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Isah Yakub Mohammed
    • 1
    • 5
    Email author
  • Chun Hsion Lim
    • 1
    • 5
  • Feroz Kabir Kazi
    • 3
  • Suzana Yusup
    • 4
  • Hon Loong Lam
    • 1
  • Yousif Abdalla Abakr
    • 2
  1. 1.Department of Chemical and Environmental EngineeringThe University of Nottingham Malaysia CampusSemenyihMalaysia
  2. 2.Department of Mechanical, Manufacturing and Material EngineeringThe University of Nottingham Malaysia CampusSemenyihMalaysia
  3. 3.Department of Engineering and MathematicsSheffield Hallam UniversitySheffieldUK
  4. 4.Department of Chemical EngineeringUniversiti Teknologi PETRONASBandar Seri Iskandar, TronohMalaysia
  5. 5.Crops for the Future (CFF)The University of Nottingham Malaysia CampusSemenyihMalaysia

Personalised recommendations