Skip to main content
Log in

Effects of Pretreatments of Napier Grass with Deionized Water, Sulfuric Acid and Sodium Hydroxide on Pyrolysis Oil Characteristics

Waste and Biomass Valorization Aims and scope Submit manuscript

Cite this article


The depletion of fossil fuel reserves has led to increasing interest in liquid bio-fuel from renewable biomass. Biomass is a complex organic material consisting of different degrees of cellulose, hemicellulose, lignin, extractives and minerals. Some of the mineral elements tend to retard conversions, yield and selectivity during pyrolysis processing. This study is focused on the extraction of mineral retardants from Napier grass using deionized water, dilute sodium hydroxide and sulfuric acid and subsequent pyrolysis in a fixed bed reactor. The raw biomass was characterized before and after each pretreatment following standard procedure. Pyrolysis study was conducted in a fixed bed reactor at 600 °C, 30 °C/min and 30 mL/min N2 flow. Pyrolysis oil (bio-oil) collected was analyzed using standard analytic techniques. The bio-oil yield and characteristics from each pretreated sample were compared with oil from the non-pretreated sample. Bio-oil yield from the raw sample was 32.06 wt% compared to 38.71, 33.28 and 29.27 wt% oil yield recorded from the sample pretreated with sulfuric acid, deionized water and sodium hydroxide respectively. GC–MS analysis of the oil samples revealed that the oil from all the pretreated biomass had more value added chemicals and less ketones and aldehydes. Pretreatment with neutral solvent generated valuable leachate, showed significant impact on the ash extraction, pyrolysis oil yield, and its composition and therefore can be regarded as more appropriate for thermochemical conversion of Napier grass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others



Acids, aldehydes and ketones


Acid leachate


Acid treated Napier grass stem


Alkaline leachate


Alkaline treated Napier grass stem


American Society for Testing and Materials


British Standards Institution


Carbon (%)




Crops for the future


Derivative of thermogravimetric




European Standard


Esters and other organic compounds


Fourier transform infrared


Gas chromatograph mass spectrometer


Hydrogen (%)






Higher heating value (MJ/kg)




Liquid–solid ratio (wt/wt)


Nitrogen (%)


Napier grass stem


National Institute of Standards and Technology


Nitrogenous and sulfur containing compounds


Oxygen (%)


Raw Napier grass stem


Severity factor


Revolution per minute (min−1)


Sulfur (%)


Thermogravimetric analyzer


Value added chemicals


Water leachate


Water treated Napier grass stem

Ybio-char :

Bio-char yield

Ybio-oil :

Bio-oil yield


Energy yield (%)


Mass yield (%)

YNoncondensable :

Noncondensable yield


  1. Yakub, M.I., Mohamed, S., Danladi, S.U.: Technical and economic considerations of post-combustion carbon capture in a coal fired power plant. Int. J. Adv. Eng. Technol. 7(5), 1549–1581 (2014)

    Google Scholar 

  2. Mohammed, I.Y.: Optimization and sensitivity analysis of post-combustion carbon capture using DEA solvent in a coal fired power plant. Int. J. Adv. Eng. Technol. 7(6), 1681–1690 (2015)

    Google Scholar 

  3. Mohammed, I.Y., Samah, M., Mohamed, A., Sabina, G.: Comparison of Selexol™ and Rectisol® Technologies in an integrated gasification combined cycle (IGCC) plant for clean energy production. Int. J. Eng. Res. 3(12), 742–744 (2014)

    Article  Google Scholar 

  4. Yakub, M.I., Abdalla, A.Y., Feroz, K.K., Suzana, Y., Ibraheem, A., Chin, S.A.: Pyrolysis of oil palm residues in a fixed bed tubular reactor. J. Power Energy Eng. 3(04), 185 (2015)

    Article  Google Scholar 

  5. Gebreslassie, B.H., Slivinsky, M., Wang, B., You, F.: Life cycle optimization for sustainable design and operations of hydrocarbon biorefinery via fast pyrolysis, hydrotreating and hydrocracking. Comput. Chem. Eng. 50, 71–91 (2013)

    Article  Google Scholar 

  6. Liew, W.H., Hassim, M.H., Ng, D.K.S.: Review of evolution, technology and sustainability assessments of biofuel production. J. Clean. Prod. 71, 11–29 (2014)

    Article  Google Scholar 

  7. Park, S.R., Pandey, A.K., Tyagi, V.V., Tyagi, S.K.: Energy and exergy analysis of typical renewable energy systems. Renew. Sustain. Energy Rev. 30, 105–123 (2014)

    Article  Google Scholar 

  8. Ming, Z., Ximei, L., Yulong, L., Lilin, P.: Review of renewable energy investment and financing in China: status, mode, issues and countermeasures. Renew. Sustain. Energy Rev. 31, 23–37 (2014)

    Article  Google Scholar 

  9. Nigam, P.S., Singh, A.: Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 37, 52–68 (2011)

    Article  Google Scholar 

  10. Srirangan, K., Akawi, L., Moo-Young, M., Chou, C.P.: Towards sustainable production of clean energy carriers from biomass resources. Appl. Energy 100, 172–186 (2012)

    Article  Google Scholar 

  11. Samson, R., Mani, S., Boddey, R., Sokhansanj, S., Quesada, D., Urquiaga, S., Reis, V., Ho-Lem, C.: The potential of C4 perennial grasses for developing a global BIOHEAT industry. Crit. Rev. Plant Sci. 24, 461–495 (2005)

    Article  Google Scholar 

  12. Mohammed, I.Y., Abakr, Y.A., Kazi, F.K., Yusup, S., Alshareef, I., Chin, S.A.: Comprehensive characterization of Napier grass as a feedstock for thermochemical conversion. Energies 8(5), 3403–3417 (2015)

    Article  Google Scholar 

  13. Khan, A.A., Jonga, W.D., Jansens, P.J., Spliethoff, H.: Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process. Technol. 90, 21–50 (2009)

    Article  Google Scholar 

  14. García, R., Pizarro, C., Lavín, A.G., Bueno, J.L.: Characterization of Spanish biomass wastes for energy use. Bioresour. Technol. 103, 249–258 (2012)

    Article  Google Scholar 

  15. Di-Blasi, C.: Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34(1), 47–90 (2008)

    Article  Google Scholar 

  16. Jahirul, M.I., Rasul, M.G., Chowdhury, A.A., Ashwath, N.: Biofuels production through biomass pyrolysis—a technological review. Energies 5(12), 4952–5001 (2012)

    Article  Google Scholar 

  17. Binder, J.B., Raines, R.T.: Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 131, 1979–1985 (2009)

    Article  Google Scholar 

  18. Lim, J.S., Abdul-Manan, Z., Wan-Alwi, S.R., Hashim, H.: A review on utilisation of biomass from rice industry as a source of renewable energy. Renew. Sustain. Energy Rev. 16, 3084–3094 (2012)

    Article  Google Scholar 

  19. Tan, H., Wang, S.: Experimental study of the effect of acid-washing pretreatment on biomass pyrolysis. J. Fuel Chem. Technol. 37(6), 668–672 (2009)

    Article  Google Scholar 

  20. Stephanidis, S., Nitsos, C., Kalogiannis, K., Iliopoulou, E.F., Lappas, A.A., Triantafyllidis, K.S.: Catalytic upgrading of lignocellulosic biomass pyrolysis vapours: effect of hydrothermal pre-treatment of biomass. Catal. Today 167, 37–45 (2011)

    Article  Google Scholar 

  21. Biswas, A.K., Umeki, K., Yang, W., Blasiak, W.: Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment. Fuel Process. Technol. 92, 1849–1854 (2011)

    Article  Google Scholar 

  22. Kim, Y., Mosier, N.S., Ladisch, M.R.: Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol Progr. 25, 340–348 (2009)

    Article  Google Scholar 

  23. Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B.: Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29, 675–685 (2011)

    Article  Google Scholar 

  24. Kaar, W.E., Gutierrea, C.V., Kinoshita, C.M.: Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenergy 14, 277–287 (1998)

    Article  Google Scholar 

  25. Angles, M.N., Ferrandob, F., Farriola, X., Salvad, J.: Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pretreatment severity and lignin addition. Biomass Bioenergy 21, 211–224 (2001)

    Article  Google Scholar 

  26. Sassner, P., Galbe, M., Zacchi, G.: Bioethanol production based on simultaneous saccharification and fermentation of steam- pretreated Salix at high dry-matter content. Enzyme Microb. Technol. 39(4), 756–762 (2006)

    Article  Google Scholar 

  27. Olofsson, K., Bertilsson, M., Lidén, G.A.: Short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 1, 1–14 (2008)

    Article  Google Scholar 

  28. Chen, W.-H., Liu, S.-H., Juang, T.-T., Tsai, C.-M., Zhuang, Y.-Q.: Characterization of solid and liquid products from bamboo torrefaction. Appl. Energy 160(15), 829–835 (2015)

    Article  Google Scholar 

  29. Yang, X., Choi, H.-S., Park, C., Kim, S.-W.: Current states and prospects of organic waste utilization for biorefineries. Renew. Sustain. Energy Rev. 49, 335–349 (2015)

    Article  Google Scholar 

  30. McIntosh, S., Vancov, T.: Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour. Technol. 101, 5718–5727 (2010)

    Article  Google Scholar 

  31. Ibrahim, M.M., El-Zawawy, W.K., Abdel-Fattah, Y.R., Soliman, N.A., Agblevor, F.A.: Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohydr Polym 83, 720–725 (2011)

    Article  Google Scholar 

  32. Sills, D.L., Gossett, J.M.: Assessment of commercial hemicellulases for sacchari-fication of alkaline pretreated perennial biomass. Bioresour. Technol. 102, 1389–1398 (2011)

    Article  Google Scholar 

  33. Menon, V., Rao, M.: Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522–550 (2012)

    Article  Google Scholar 

  34. Wang, H., Wang, J., Fang, Z., Wang, X., Bu, H.: Enhanced bio-hydrogen production by anaerobic fermentation of apple pomace with enzyme hydrolysis. Int. J. Hydrogen Energy 35(15), 8303–8309 (2010)

    Article  Google Scholar 

  35. Das, P., Ganesh, A., Wangikar, P.: Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass Bioenergy 27, 445–457 (2004)

    Article  Google Scholar 

  36. Zhang, H.P., Ding, S.Y., Mielenz, J.R., Elander, R.T., Laser, M., Himmel, M.E., McMillan, J.R., Lynd, L.R.: Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 97(2), 214–223 (2007)

    Article  Google Scholar 

  37. BS EN 14774-1: Solid biofuels. Determination of moisture content. Oven dry method. Total moisture reference method. British Standards Institution, London, UK (2009)

  38. BS EN 15148: Solid biofuels. Determination of the content of volatile matter. British Standards Institution, London, UK (2009)

  39. BS EN 14775: Solid biofuels. Determination of ash content. British Standards Institution, London, UK (2009)

  40. BS EN 14918: Solid biofuels. Determination of calorific value. British Standards Institution, London, UK (2009)

  41. BS EN 15290: Solid biofuels. Determination of major elements-Al, Ca, Fe, Mg, P, K, Si, Na and Ti. British Standards Institution, London, UK (2011)

  42. Overend, R.P., Chornet, E., Gascoigne, J.A.: Fractionation of Lignocellulosics by Steam-Aqueous Pretreatments and Discussion. Phil. Trans. R. Soc. Lond 321, 523–536 (1987)

    Article  Google Scholar 

  43. Mohammed, I.Y., Abakr, A.Y., Kazi, F.K., Yusup, S., Alshareef, I., Soh, A.C.: Pyrolysis of Napier grass in a fixed bed reactor: effect of operating conditions on product yields and characteristics. BioResources 10(4), 6457–6478 (2015)

    Article  Google Scholar 

  44. ASTM D240: Standard test method for heat of combustion of liquid hydrocarbon fuels by bomb calorimeter. ASTM International West Conshohocken, PA (2009)

  45. Mohammed, I.Y., Kazi, F.K., Abakr, Y.A., Yusuf, S., Razzaque, M.A.: Novel method for the determination of water content and higher heating value of pyrolysis oil. BioResources 10(2), 2681–2690 (2015)

    Article  Google Scholar 

  46. ASTM E203: Standard test method for water using volumetric Karl Fischer titration. ASTM International West Conshohocken, PA (2001)

  47. Eom, I.-Y., Kim, K.-H., Kim, J.-Y., Lee, S.-M., Yeo, H.-M., Choi, I.-G., Choi, J.-W.: Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents. Bioresour. Technol. 102(3), 3437–3444 (2011)

    Article  Google Scholar 

  48. Cuvilas, C.A., Yang, W.: Spruce pretreatment for thermal application: water, alkaline, and diluted acid hydrolysis. Energy and Fuel 26, 6426–6431 (2012)

    Article  Google Scholar 

  49. Asadieraghi, M., Daud, W.M.A.W.: Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions. Energy Convers. Manag. 82, 71–82 (2014)

    Article  Google Scholar 

  50. Carpenter, D., Westover, T.L., Czernik, S., Jablonski, W.: Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 16, 384–406 (2014)

    Article  Google Scholar 

  51. Jiang, L., Hu, S., Sun, L.-S., Su, S., Xu, K., He, L.-M., Xiang, J.: Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresour. Technol. 146, 254–260 (2013)

    Article  Google Scholar 

  52. Wigley, T., Yip, A.C.K., Pang, S.: The use of demineralisation and torrefaction to improve the properties of biomass intended as a feedstock for fast pyrolysis. J. Anal. Appl. Pyrol. 113, 296–306 (2015)

    Article  Google Scholar 

  53. Deng, L., Zhang, T., Che, D.: Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass. Fuel Process. Technol. 106, 712–720 (2013)

    Article  Google Scholar 

  54. Gudka, B., Jones, J.M., Lea-Langton, A.R., Williams, A., Saddawi, A.: A review of the mitigation of deposition and emission problems during biomass combustion through washing pre-treatment. J. Energy Inst. 89(2), 159–171 (2016)

    Article  Google Scholar 

  55. Wang, H., Srinivasan, R., Yu, F., Steele, P., Li, Q., Mitchell, B.: Effect of acid, alkali, and steam explosion pretreatments on characteristics of bio-oil produced from pinewood. Energy Fuels 25, 3758–3764 (2011)

    Article  Google Scholar 

  56. Xin, D., Yang, Z., Liu, F., Xu, X., Zhang, J.: Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: structure properties and enzymatic hydrolysis. Bioresour. Technol. 175, 529–536 (2015)

    Article  Google Scholar 

  57. Sun, Y.-G., Ma, Y.-L., Wang, L.-Q., Wang, F.-Z., Wu, Q.-Q., Pan, G.-Y.: Physicochemical properties of corn stalk after treatment using steam explosion coupled with acid or alkali. Carbohydr. Polym. 117, 486–493 (2015)

    Article  Google Scholar 

  58. Erdogan, E., Atila, B., Mumme, J., Reza, M.T., Toptas, A., Elibol, M., Yanik, J.: Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresour. Technol. 196, 35–42 (2015)

    Article  Google Scholar 

  59. Ben, H., Ragauskas, A.J.: Torrefaction of Loblolly pine. Green Chem. 14, 72–76 (2012)

    Article  Google Scholar 

  60. Nhuchhen, D.R., Basu, P., Acharya, B.A.: Comprehensive review on biomass torrefaction. Int. J. Renew. Energy Biofuels 2014, 1–56 (2014)

    Article  Google Scholar 

  61. Xu, F., Yu, J., Tesso, T., Dowell, F., Wang, D.: Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl. Energy 104, 801–809 (2013)

    Article  Google Scholar 

  62. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)

    Article  Google Scholar 

  63. Nazir, M.S., Wahjoedi, B.A., Yussof, A.W., Abdaulla, M.A.: Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. BioResources 8, 2161–2172 (2013)

    Article  Google Scholar 

  64. Lupoi, J.S., Singh, S., Simmons, B.A., Henry, R.J.: Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. Bioenergy Res. 7(1), 71–23 (2014)

    Article  Google Scholar 

  65. Das, S., Bhattacharya, A., Haldar, S., Ganguly, A., Gu, S., Ting, Y.P., Chatterjee, P.K.: Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: Comparison between artificial neural network and response surface methodology. Sustain. Mater. Technol. 3, 17–28 (2015)

    Google Scholar 

  66. Li, W., Wang, W., Xu, P., Xu, P., Zhao, X., Wang, Y.: Pretreatment of Miscanthus stalk with organic alkali guanidine and amino-guanidine. Bioresour. Technol. 179, 606–610 (2015)

    Article  Google Scholar 

  67. Plis, A., Lasek, J., Skawinska, A., Kopczynski, M.: Thermo-chemical properties of biomass from Posidonia oceanica. Chem. Pap. 68, 879–889 (2014)

    Article  Google Scholar 

  68. Reddy, K.O., Maheswari, C.U., Shukla, M., Rajulu, A.V.: Chemical composition and structural characterization of Napier grass fibers. Mater. Lett. 67, 35–38 (2012)

    Article  Google Scholar 

  69. Sills, D.L., Gossett, J.M.: Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol. Bioeng. 109, 353–362 (2012)

    Article  Google Scholar 

  70. Nanda, S., Mohanty, P., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K.: Characterization of north american lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res. 6, 663–677 (2013)

    Article  Google Scholar 

  71. Qian, K., Kumar, A., Patil, K., Bellmer, D., Wang, D., Yuan, W., Raymond, L., Huhnke, R.L.: Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies 6, 3972–3986 (2013)

    Article  Google Scholar 

  72. Sebestyén, Z., May, Z., Réczey, K., Jakab, E.: The effect of alkaline pretreatment on the thermal decomposition of hemp. J. Therm. Anal. Calorim. 105, 1061–1069 (2011)

    Article  Google Scholar 

  73. Tyrone, W., Wei, Z., Ragauskas, A.: Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069. Biomass Bioenergy 72, 200–205 (2015)

    Article  Google Scholar 

  74. Tao, F., Miao, J.Y., Shi, G.Y., Zhang, K.C.: Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition. Process Biochem. 40, 183–187 (2005)

    Article  Google Scholar 

  75. Bai, F.W., Anderson, A.W., Moo-Young, M.: Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26, 89–105 (2008)

    Article  Google Scholar 

  76. Mitsumasu, K., Liu, Z.-S., Tang, Y.-Q., Akamatsu, T., Taguchi, H., Kida, K.: Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating. J. Biosci. Bioeng. 118(6), 689–695 (2014)

    Article  Google Scholar 

  77. Beauchet, R., Monteil-River, F., Lavoie, J.M.: Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresour. Technol. 121, 328–334 (2012)

    Article  Google Scholar 

  78. Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A.: Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew. Sustain. Energy Rev. 21, 506–523 (2013)

    Article  Google Scholar 

  79. Ma, X., Tian, Y., Hao, W., Ma, R., Li, Y.: Production of phenols from catalytic conversion of lignin over a tungsten phosphide catalyst. Appl. Catal. A 481, 64–70 (2014)

    Article  Google Scholar 

  80. AbuBakar, M.S., Titiloye, J.O.: Catalytic pyrolysis of rice husk for bio-oil production. J. Anal. Appl. Pyrol. 103, 362–368 (2013)

    Article  Google Scholar 

  81. Lee, M.-K., Tsai, W.-T., Tsai, Y.-L., Lin, S.-H.: Pyrolysis of Napier grass in an induction-heating reactor. J. Anal. Appl. Pyrol. 88(2), 110–116 (2010)

    Article  Google Scholar 

  82. Fan, Y., Cai, Y., Li, X., Yin, H., Yu, N., Zhang, R., Zhao, W.: Rape straw as a source of bio-oil via vacuum pyrolysis: optimization of bio-oil yield using orthogonal design method and characterization of bio-oil. J. Anal. Appl. Pyrol. 106, 63–70 (2014)

    Article  Google Scholar 

  83. Imam, T., Capareda, S.: Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J. Anal. Appl. Pyrol. 93, 170–177 (2012)

    Article  Google Scholar 

  84. Le Roux, E., Chaouch, M., Diouf, P.N., Stevanovic, T.: Impact of a pressurized hot water treatment on the quality of bio-oil produced from aspen. Biomass Bioenergy 81, 202–209 (2015)

    Article  Google Scholar 

  85. Adrados, A., DeMarco, I., Lopez-Urionabarrenechea, A., Solar, J., Caballero, B.: Avoiding tar formation in biocoke production from waste biomass. Biomass Bioenergy 74, 172–179 (2015)

    Article  Google Scholar 

  86. Guo, Y., Song, W., Lu, J., Ma, Q., Xu, D., Wang, S.: Hydrothermal liquefaction of Cyanophyta: evaluation of potential bio-crude oil production and component analysis. Algal Res. 11, 242–247 (2015)

    Article  Google Scholar 

  87. Bordoloi, N., Narzari, R., Chutia, R.S., Bhaskar, T., Kataki, R.: Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresour. Technol. 178, 83–89 (2015)

    Article  Google Scholar 

  88. Deshmukh, Y., Yadav, V., Nigam, N., Yadav, A., Khare, P.: Quality of bio-oil by pyrolysis of distilled spent of Cymbopogon flexuosus. J. Anal. Appl. Pyrolysis 115, 43–50 (2015)

    Article  Google Scholar 

Download references


The project was supported by the Crops for the Future (CFF) and University of Nottingham under the grant BioP1-005.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Yousif Abdalla Abakr.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, I.Y., Abakr, Y.A., Kazi, F.K. et al. Effects of Pretreatments of Napier Grass with Deionized Water, Sulfuric Acid and Sodium Hydroxide on Pyrolysis Oil Characteristics. Waste Biomass Valor 8, 755–773 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: