Abstract
The depletion of fossil fuel reserves has led to increasing interest in liquid bio-fuel from renewable biomass. Biomass is a complex organic material consisting of different degrees of cellulose, hemicellulose, lignin, extractives and minerals. Some of the mineral elements tend to retard conversions, yield and selectivity during pyrolysis processing. This study is focused on the extraction of mineral retardants from Napier grass using deionized water, dilute sodium hydroxide and sulfuric acid and subsequent pyrolysis in a fixed bed reactor. The raw biomass was characterized before and after each pretreatment following standard procedure. Pyrolysis study was conducted in a fixed bed reactor at 600 °C, 30 °C/min and 30 mL/min N2 flow. Pyrolysis oil (bio-oil) collected was analyzed using standard analytic techniques. The bio-oil yield and characteristics from each pretreated sample were compared with oil from the non-pretreated sample. Bio-oil yield from the raw sample was 32.06 wt% compared to 38.71, 33.28 and 29.27 wt% oil yield recorded from the sample pretreated with sulfuric acid, deionized water and sodium hydroxide respectively. GC–MS analysis of the oil samples revealed that the oil from all the pretreated biomass had more value added chemicals and less ketones and aldehydes. Pretreatment with neutral solvent generated valuable leachate, showed significant impact on the ash extraction, pyrolysis oil yield, and its composition and therefore can be regarded as more appropriate for thermochemical conversion of Napier grass.
This is a preview of subscription content,
to check access.











Similar content being viewed by others
Abbreviations
- AAK:
-
Acids, aldehydes and ketones
- ACL:
-
Acid leachate
- ACTNGS:
-
Acid treated Napier grass stem
- ALL:
-
Alkaline leachate
- ALTNGS:
-
Alkaline treated Napier grass stem
- ASTM:
-
American Society for Testing and Materials
- BSI:
-
British Standards Institution
- C:
-
Carbon (%)
- c:
-
Cellulose
- CFF:
-
Crops for the future
- DTG:
-
Derivative of thermogravimetric
- e:
-
Extractives
- EN:
-
European Standard
- EOS:
-
Esters and other organic compounds
- FTIR:
-
Fourier transform infrared
- GCMS:
-
Gas chromatograph mass spectrometer
- H:
-
Hydrogen (%)
- h:
-
Hemicellulose
- HC:
-
Hydrocarbon
- HHV:
-
Higher heating value (MJ/kg)
- l:
-
Lignin
- L/S:
-
Liquid–solid ratio (wt/wt)
- N:
-
Nitrogen (%)
- NGS:
-
Napier grass stem
- NIST:
-
National Institute of Standards and Technology
- NS:
-
Nitrogenous and sulfur containing compounds
- O:
-
Oxygen (%)
- RNGS:
-
Raw Napier grass stem
- Ro:
-
Severity factor
- rpm:
-
Revolution per minute (min−1)
- S:
-
Sulfur (%)
- TGA:
-
Thermogravimetric analyzer
- VAC:
-
Value added chemicals
- WL:
-
Water leachate
- WTNGS:
-
Water treated Napier grass stem
- Ybio-char :
-
Bio-char yield
- Ybio-oil :
-
Bio-oil yield
- YE:
-
Energy yield (%)
- YM:
-
Mass yield (%)
- YNoncondensable :
-
Noncondensable yield
References
Yakub, M.I., Mohamed, S., Danladi, S.U.: Technical and economic considerations of post-combustion carbon capture in a coal fired power plant. Int. J. Adv. Eng. Technol. 7(5), 1549–1581 (2014)
Mohammed, I.Y.: Optimization and sensitivity analysis of post-combustion carbon capture using DEA solvent in a coal fired power plant. Int. J. Adv. Eng. Technol. 7(6), 1681–1690 (2015)
Mohammed, I.Y., Samah, M., Mohamed, A., Sabina, G.: Comparison of Selexol™ and Rectisol® Technologies in an integrated gasification combined cycle (IGCC) plant for clean energy production. Int. J. Eng. Res. 3(12), 742–744 (2014)
Yakub, M.I., Abdalla, A.Y., Feroz, K.K., Suzana, Y., Ibraheem, A., Chin, S.A.: Pyrolysis of oil palm residues in a fixed bed tubular reactor. J. Power Energy Eng. 3(04), 185 (2015)
Gebreslassie, B.H., Slivinsky, M., Wang, B., You, F.: Life cycle optimization for sustainable design and operations of hydrocarbon biorefinery via fast pyrolysis, hydrotreating and hydrocracking. Comput. Chem. Eng. 50, 71–91 (2013)
Liew, W.H., Hassim, M.H., Ng, D.K.S.: Review of evolution, technology and sustainability assessments of biofuel production. J. Clean. Prod. 71, 11–29 (2014)
Park, S.R., Pandey, A.K., Tyagi, V.V., Tyagi, S.K.: Energy and exergy analysis of typical renewable energy systems. Renew. Sustain. Energy Rev. 30, 105–123 (2014)
Ming, Z., Ximei, L., Yulong, L., Lilin, P.: Review of renewable energy investment and financing in China: status, mode, issues and countermeasures. Renew. Sustain. Energy Rev. 31, 23–37 (2014)
Nigam, P.S., Singh, A.: Production of liquid biofuels from renewable resources. Prog. Energy Combust. Sci. 37, 52–68 (2011)
Srirangan, K., Akawi, L., Moo-Young, M., Chou, C.P.: Towards sustainable production of clean energy carriers from biomass resources. Appl. Energy 100, 172–186 (2012)
Samson, R., Mani, S., Boddey, R., Sokhansanj, S., Quesada, D., Urquiaga, S., Reis, V., Ho-Lem, C.: The potential of C4 perennial grasses for developing a global BIOHEAT industry. Crit. Rev. Plant Sci. 24, 461–495 (2005)
Mohammed, I.Y., Abakr, Y.A., Kazi, F.K., Yusup, S., Alshareef, I., Chin, S.A.: Comprehensive characterization of Napier grass as a feedstock for thermochemical conversion. Energies 8(5), 3403–3417 (2015)
Khan, A.A., Jonga, W.D., Jansens, P.J., Spliethoff, H.: Biomass combustion in fluidized bed boilers: potential problems and remedies. Fuel Process. Technol. 90, 21–50 (2009)
García, R., Pizarro, C., Lavín, A.G., Bueno, J.L.: Characterization of Spanish biomass wastes for energy use. Bioresour. Technol. 103, 249–258 (2012)
Di-Blasi, C.: Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34(1), 47–90 (2008)
Jahirul, M.I., Rasul, M.G., Chowdhury, A.A., Ashwath, N.: Biofuels production through biomass pyrolysis—a technological review. Energies 5(12), 4952–5001 (2012)
Binder, J.B., Raines, R.T.: Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. J. Am. Chem. Soc. 131, 1979–1985 (2009)
Lim, J.S., Abdul-Manan, Z., Wan-Alwi, S.R., Hashim, H.: A review on utilisation of biomass from rice industry as a source of renewable energy. Renew. Sustain. Energy Rev. 16, 3084–3094 (2012)
Tan, H., Wang, S.: Experimental study of the effect of acid-washing pretreatment on biomass pyrolysis. J. Fuel Chem. Technol. 37(6), 668–672 (2009)
Stephanidis, S., Nitsos, C., Kalogiannis, K., Iliopoulou, E.F., Lappas, A.A., Triantafyllidis, K.S.: Catalytic upgrading of lignocellulosic biomass pyrolysis vapours: effect of hydrothermal pre-treatment of biomass. Catal. Today 167, 37–45 (2011)
Biswas, A.K., Umeki, K., Yang, W., Blasiak, W.: Change of pyrolysis characteristics and structure of woody biomass due to steam explosion pretreatment. Fuel Process. Technol. 92, 1849–1854 (2011)
Kim, Y., Mosier, N.S., Ladisch, M.R.: Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol Progr. 25, 340–348 (2009)
Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B.: Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29, 675–685 (2011)
Kaar, W.E., Gutierrea, C.V., Kinoshita, C.M.: Steam explosion of sugarcane bagasse as a pretreatment for conversion to ethanol. Biomass Bioenergy 14, 277–287 (1998)
Angles, M.N., Ferrandob, F., Farriola, X., Salvad, J.: Suitability of steam exploded residual softwood for the production of binderless panels. Effect of the pretreatment severity and lignin addition. Biomass Bioenergy 21, 211–224 (2001)
Sassner, P., Galbe, M., Zacchi, G.: Bioethanol production based on simultaneous saccharification and fermentation of steam- pretreated Salix at high dry-matter content. Enzyme Microb. Technol. 39(4), 756–762 (2006)
Olofsson, K., Bertilsson, M., Lidén, G.A.: Short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 1, 1–14 (2008)
Chen, W.-H., Liu, S.-H., Juang, T.-T., Tsai, C.-M., Zhuang, Y.-Q.: Characterization of solid and liquid products from bamboo torrefaction. Appl. Energy 160(15), 829–835 (2015)
Yang, X., Choi, H.-S., Park, C., Kim, S.-W.: Current states and prospects of organic waste utilization for biorefineries. Renew. Sustain. Energy Rev. 49, 335–349 (2015)
McIntosh, S., Vancov, T.: Enhanced enzyme saccharification of Sorghum bicolor straw using dilute alkali pretreatment. Bioresour. Technol. 101, 5718–5727 (2010)
Ibrahim, M.M., El-Zawawy, W.K., Abdel-Fattah, Y.R., Soliman, N.A., Agblevor, F.A.: Comparison of alkaline pulping with steam explosion for glucose production from rice straw. Carbohydr Polym 83, 720–725 (2011)
Sills, D.L., Gossett, J.M.: Assessment of commercial hemicellulases for sacchari-fication of alkaline pretreated perennial biomass. Bioresour. Technol. 102, 1389–1398 (2011)
Menon, V., Rao, M.: Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog. Energy Combust. Sci. 38, 522–550 (2012)
Wang, H., Wang, J., Fang, Z., Wang, X., Bu, H.: Enhanced bio-hydrogen production by anaerobic fermentation of apple pomace with enzyme hydrolysis. Int. J. Hydrogen Energy 35(15), 8303–8309 (2010)
Das, P., Ganesh, A., Wangikar, P.: Influence of pretreatment for deashing of sugarcane bagasse on pyrolysis products. Biomass Bioenergy 27, 445–457 (2004)
Zhang, H.P., Ding, S.Y., Mielenz, J.R., Elander, R.T., Laser, M., Himmel, M.E., McMillan, J.R., Lynd, L.R.: Fractionating recalcitrant lignocellulose at modest reaction conditions. Biotechnol. Bioeng. 97(2), 214–223 (2007)
BS EN 14774-1: Solid biofuels. Determination of moisture content. Oven dry method. Total moisture reference method. British Standards Institution, London, UK (2009)
BS EN 15148: Solid biofuels. Determination of the content of volatile matter. British Standards Institution, London, UK (2009)
BS EN 14775: Solid biofuels. Determination of ash content. British Standards Institution, London, UK (2009)
BS EN 14918: Solid biofuels. Determination of calorific value. British Standards Institution, London, UK (2009)
BS EN 15290: Solid biofuels. Determination of major elements-Al, Ca, Fe, Mg, P, K, Si, Na and Ti. British Standards Institution, London, UK (2011)
Overend, R.P., Chornet, E., Gascoigne, J.A.: Fractionation of Lignocellulosics by Steam-Aqueous Pretreatments and Discussion. Phil. Trans. R. Soc. Lond 321, 523–536 (1987)
Mohammed, I.Y., Abakr, A.Y., Kazi, F.K., Yusup, S., Alshareef, I., Soh, A.C.: Pyrolysis of Napier grass in a fixed bed reactor: effect of operating conditions on product yields and characteristics. BioResources 10(4), 6457–6478 (2015)
ASTM D240: Standard test method for heat of combustion of liquid hydrocarbon fuels by bomb calorimeter. ASTM International West Conshohocken, PA (2009)
Mohammed, I.Y., Kazi, F.K., Abakr, Y.A., Yusuf, S., Razzaque, M.A.: Novel method for the determination of water content and higher heating value of pyrolysis oil. BioResources 10(2), 2681–2690 (2015)
ASTM E203: Standard test method for water using volumetric Karl Fischer titration. ASTM International West Conshohocken, PA (2001)
Eom, I.-Y., Kim, K.-H., Kim, J.-Y., Lee, S.-M., Yeo, H.-M., Choi, I.-G., Choi, J.-W.: Characterization of primary thermal degradation features of lignocellulosic biomass after removal of inorganic metals by diverse solvents. Bioresour. Technol. 102(3), 3437–3444 (2011)
Cuvilas, C.A., Yang, W.: Spruce pretreatment for thermal application: water, alkaline, and diluted acid hydrolysis. Energy and Fuel 26, 6426–6431 (2012)
Asadieraghi, M., Daud, W.M.A.W.: Characterization of lignocellulosic biomass thermal degradation and physiochemical structure: Effects of demineralization by diverse acid solutions. Energy Convers. Manag. 82, 71–82 (2014)
Carpenter, D., Westover, T.L., Czernik, S., Jablonski, W.: Biomass feedstocks for renewable fuel production: a review of the impacts of feedstock and pretreatment on the yield and product distribution of fast pyrolysis bio-oils and vapors. Green Chem. 16, 384–406 (2014)
Jiang, L., Hu, S., Sun, L.-S., Su, S., Xu, K., He, L.-M., Xiang, J.: Influence of different demineralization treatments on physicochemical structure and thermal degradation of biomass. Bioresour. Technol. 146, 254–260 (2013)
Wigley, T., Yip, A.C.K., Pang, S.: The use of demineralisation and torrefaction to improve the properties of biomass intended as a feedstock for fast pyrolysis. J. Anal. Appl. Pyrol. 113, 296–306 (2015)
Deng, L., Zhang, T., Che, D.: Effect of water washing on fuel properties, pyrolysis and combustion characteristics, and ash fusibility of biomass. Fuel Process. Technol. 106, 712–720 (2013)
Gudka, B., Jones, J.M., Lea-Langton, A.R., Williams, A., Saddawi, A.: A review of the mitigation of deposition and emission problems during biomass combustion through washing pre-treatment. J. Energy Inst. 89(2), 159–171 (2016)
Wang, H., Srinivasan, R., Yu, F., Steele, P., Li, Q., Mitchell, B.: Effect of acid, alkali, and steam explosion pretreatments on characteristics of bio-oil produced from pinewood. Energy Fuels 25, 3758–3764 (2011)
Xin, D., Yang, Z., Liu, F., Xu, X., Zhang, J.: Comparison of aqueous ammonia and dilute acid pretreatment of bamboo fractions: structure properties and enzymatic hydrolysis. Bioresour. Technol. 175, 529–536 (2015)
Sun, Y.-G., Ma, Y.-L., Wang, L.-Q., Wang, F.-Z., Wu, Q.-Q., Pan, G.-Y.: Physicochemical properties of corn stalk after treatment using steam explosion coupled with acid or alkali. Carbohydr. Polym. 117, 486–493 (2015)
Erdogan, E., Atila, B., Mumme, J., Reza, M.T., Toptas, A., Elibol, M., Yanik, J.: Characterization of products from hydrothermal carbonization of orange pomace including anaerobic digestibility of process liquor. Bioresour. Technol. 196, 35–42 (2015)
Ben, H., Ragauskas, A.J.: Torrefaction of Loblolly pine. Green Chem. 14, 72–76 (2012)
Nhuchhen, D.R., Basu, P., Acharya, B.A.: Comprehensive review on biomass torrefaction. Int. J. Renew. Energy Biofuels 2014, 1–56 (2014)
Xu, F., Yu, J., Tesso, T., Dowell, F., Wang, D.: Qualitative and quantitative analysis of lignocellulosic biomass using infrared techniques: a mini-review. Appl. Energy 104, 801–809 (2013)
Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)
Nazir, M.S., Wahjoedi, B.A., Yussof, A.W., Abdaulla, M.A.: Eco-friendly extraction and characterization of cellulose from oil palm empty fruit bunches. BioResources 8, 2161–2172 (2013)
Lupoi, J.S., Singh, S., Simmons, B.A., Henry, R.J.: Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to high-throughput techniques. Bioenergy Res. 7(1), 71–23 (2014)
Das, S., Bhattacharya, A., Haldar, S., Ganguly, A., Gu, S., Ting, Y.P., Chatterjee, P.K.: Optimization of enzymatic saccharification of water hyacinth biomass for bio-ethanol: Comparison between artificial neural network and response surface methodology. Sustain. Mater. Technol. 3, 17–28 (2015)
Li, W., Wang, W., Xu, P., Xu, P., Zhao, X., Wang, Y.: Pretreatment of Miscanthus stalk with organic alkali guanidine and amino-guanidine. Bioresour. Technol. 179, 606–610 (2015)
Plis, A., Lasek, J., Skawinska, A., Kopczynski, M.: Thermo-chemical properties of biomass from Posidonia oceanica. Chem. Pap. 68, 879–889 (2014)
Reddy, K.O., Maheswari, C.U., Shukla, M., Rajulu, A.V.: Chemical composition and structural characterization of Napier grass fibers. Mater. Lett. 67, 35–38 (2012)
Sills, D.L., Gossett, J.M.: Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnol. Bioeng. 109, 353–362 (2012)
Nanda, S., Mohanty, P., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K.: Characterization of north american lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res. 6, 663–677 (2013)
Qian, K., Kumar, A., Patil, K., Bellmer, D., Wang, D., Yuan, W., Raymond, L., Huhnke, R.L.: Effects of biomass feedstocks and gasification conditions on the physiochemical properties of char. Energies 6, 3972–3986 (2013)
Sebestyén, Z., May, Z., Réczey, K., Jakab, E.: The effect of alkaline pretreatment on the thermal decomposition of hemp. J. Therm. Anal. Calorim. 105, 1061–1069 (2011)
Tyrone, W., Wei, Z., Ragauskas, A.: Bioconversion of lignocellulosic pretreatment effluent via oleaginous Rhodococcus opacus DSM 1069. Biomass Bioenergy 72, 200–205 (2015)
Tao, F., Miao, J.Y., Shi, G.Y., Zhang, K.C.: Ethanol fermentation by an acid-tolerant Zymomonas mobilis under non-sterilized condition. Process Biochem. 40, 183–187 (2005)
Bai, F.W., Anderson, A.W., Moo-Young, M.: Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnol. Adv. 26, 89–105 (2008)
Mitsumasu, K., Liu, Z.-S., Tang, Y.-Q., Akamatsu, T., Taguchi, H., Kida, K.: Development of industrial yeast strain with improved acid- and thermo-tolerance through evolution under continuous fermentation conditions followed by haploidization and mating. J. Biosci. Bioeng. 118(6), 689–695 (2014)
Beauchet, R., Monteil-River, F., Lavoie, J.M.: Conversion of lignin to aromatic-based chemicals (L-chems) and biofuels (L-fuels). Bioresour. Technol. 121, 328–334 (2012)
Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A.: Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew. Sustain. Energy Rev. 21, 506–523 (2013)
Ma, X., Tian, Y., Hao, W., Ma, R., Li, Y.: Production of phenols from catalytic conversion of lignin over a tungsten phosphide catalyst. Appl. Catal. A 481, 64–70 (2014)
AbuBakar, M.S., Titiloye, J.O.: Catalytic pyrolysis of rice husk for bio-oil production. J. Anal. Appl. Pyrol. 103, 362–368 (2013)
Lee, M.-K., Tsai, W.-T., Tsai, Y.-L., Lin, S.-H.: Pyrolysis of Napier grass in an induction-heating reactor. J. Anal. Appl. Pyrol. 88(2), 110–116 (2010)
Fan, Y., Cai, Y., Li, X., Yin, H., Yu, N., Zhang, R., Zhao, W.: Rape straw as a source of bio-oil via vacuum pyrolysis: optimization of bio-oil yield using orthogonal design method and characterization of bio-oil. J. Anal. Appl. Pyrol. 106, 63–70 (2014)
Imam, T., Capareda, S.: Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures. J. Anal. Appl. Pyrol. 93, 170–177 (2012)
Le Roux, E., Chaouch, M., Diouf, P.N., Stevanovic, T.: Impact of a pressurized hot water treatment on the quality of bio-oil produced from aspen. Biomass Bioenergy 81, 202–209 (2015)
Adrados, A., DeMarco, I., Lopez-Urionabarrenechea, A., Solar, J., Caballero, B.: Avoiding tar formation in biocoke production from waste biomass. Biomass Bioenergy 74, 172–179 (2015)
Guo, Y., Song, W., Lu, J., Ma, Q., Xu, D., Wang, S.: Hydrothermal liquefaction of Cyanophyta: evaluation of potential bio-crude oil production and component analysis. Algal Res. 11, 242–247 (2015)
Bordoloi, N., Narzari, R., Chutia, R.S., Bhaskar, T., Kataki, R.: Pyrolysis of Mesua ferrea and Pongamia glabra seed cover: characterization of bio-oil and its sub-fractions. Bioresour. Technol. 178, 83–89 (2015)
Deshmukh, Y., Yadav, V., Nigam, N., Yadav, A., Khare, P.: Quality of bio-oil by pyrolysis of distilled spent of Cymbopogon flexuosus. J. Anal. Appl. Pyrolysis 115, 43–50 (2015)
Acknowledgments
The project was supported by the Crops for the Future (CFF) and University of Nottingham under the grant BioP1-005.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Mohammed, I.Y., Abakr, Y.A., Kazi, F.K. et al. Effects of Pretreatments of Napier Grass with Deionized Water, Sulfuric Acid and Sodium Hydroxide on Pyrolysis Oil Characteristics. Waste Biomass Valor 8, 755–773 (2017). https://doi.org/10.1007/s12649-016-9594-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12649-016-9594-1