Waste and Biomass Valorization

, Volume 8, Issue 1, pp 41–56 | Cite as

Isolation of Nanocrystalline Cellulose: A Technological Route for Valorizing Recycled Tetra Pak Aseptic Multilayered Food Packaging Wastes

  • Chérif Ibrahima Khalil Diop
  • Jean-Michel LavoieEmail author
Original Paper


Cellulose fibres were extracted from recycled Tetra Pak food packaging which can be a source of low cost biomass using a simple process. According to the FT-IR and XRD results, alkaline purification and bleaching have removed 99 % of the lignin that remained in the recycled cellulose fibres (up to 10 %). TEM analysis showed that depending on cellulose purity and reaction time, the average particle lengths of nanocrystalline cellulose (NCC) successfully isolated from the recycled material using acid hydrolysis ranged from 127 ± 42 to 258 ± 54 nm with average widths varying between 11.4 ± 2.8 and 14 ± 4.1 nm. Extending the reaction time to 180 min led to short rod-like particles displaying crystallinity comparable to those of the reference NCC isolated from commercial microcrystalline cellulose. A decline in the NCC thermal stability was noticed following the extraction process, NCA isolated from unpurified starting fibres showed a slightly higher stability with Tmax = 204 °C. Overall, a length to diameter aspect ratio >10 was obtained for all NCC particles, indifferently of the purity of the starting materials.

Graphical Abstract


Recycled Tetra Pak Waste valorization Nanocrystalline cellulose Technological route Isolation Characterization 



The authors are grateful to BiofuelNet Canada and to the Industrial Research Chair on Cellulosic Ethanol and Biocommodities of the Université de Sherbrooke for their support of the project. The Chair is co-funded by CRB Innovations, Enerkem and Ethanol Greenfield Québec Inc., as well as the Ministère de l’énergie et des ressources naturelles du Québec.


  1. 1.
    Orsato, R.J., Von Zuben, F., Van Wassenhove, L.: Turning waste into wealth. Int. Commer. Rev. 7, 116–123 (2007). doi: 10.1007/s12146-007-0016-y CrossRefGoogle Scholar
  2. 2.
    Tetra Pak: Tetra Pak in figures. figures (2014a). Last visited 18 Oct 2015
  3. 3.
    Tetra Pak: Tetra Pak makes progress towards environmental targets. (2014b). Last visited 18 Oct 2015
  4. 4.
    Lopes, C.M.A., Felisberti, M.I.: Composite of low-density polyethylene and aluminum obtained from the recycling of postconsumer aseptic packaging. J. Appl. Polym. Sci. 101(5), 3183–3191 (2006)CrossRefGoogle Scholar
  5. 5.
    Korkmaz, A., Yanik, J., Brebu, M., Vasile, C.: Pyrolysis of the Tetra Pak. Waste Manag 29, 2836–2841 (2009)CrossRefGoogle Scholar
  6. 6.
    Brem, A., Dewil, R., Baeyens, J., Zhang, R.: Gasification of plastic waste as waste to energy or waste-to-syngas recovery route. Nat. Sci. 5(6), 695–704 (2013)Google Scholar
  7. 7.
    Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.G.: Biomass as feed stock for a bioenergy and bioproducts industry: the technical feasibility of a billion-ton annual supply US Department of Energy/US Department of Agriculture report. Oak Ridge National Laboratory, Oak. Ridge, Tenn. (2005). last visited 23 Oct 2015
  8. 8.
    Tetra Pak Corporate Environment Affairs: Recycling of tetra Pak beverage cartons. 1–13 (2000). Last visited 15 Feb 2015
  9. 9.
    Martínez-Barrera, G., Barrera-Díaz, C.E., Cuevas-Yañez, E., Varela-Guerrero, V., Vigueras Santiago, E., Ávila-Córdoba, L., Martínez-López, M.: Waste cellulose from Tetra Pak packages as reinforcement of cement concrete. Adv. Mater. Sci. Eng. 2015, 1–6 (2015)CrossRefGoogle Scholar
  10. 10.
    Ranby, B.G.: Aqueous colloidal solutions of cellulose micelles. Acta Chem. Scand. 3, 649–650 (1949)CrossRefGoogle Scholar
  11. 11.
    Turbak, A.F., Snyder, F.W., Sandberg, K.R.: Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential. J. Appl. Polym. Sci.: Appl. Polym. Symp. 37, 815–823 (1983)Google Scholar
  12. 12.
    Dhar, P., Bhardwaj, U., Kumar, A., Katiyar, V.: Cellulose nanocrystals: a potential nanofiller for food packaging applications. Food Additives and Packaging, ACS Symposium Series, Chapter 17, 1162, 197–239 (2014) ISBN13: 9780841230248eISBN: 9780841230255Google Scholar
  13. 13.
    Isogai, A.: Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials. J. Wood Sci. 59, 449–459 (2013)CrossRefGoogle Scholar
  14. 14.
    Mukherjee, S.M., Woods, H.J.: X-ray and electron microscope studies of the degradation of cellulose by sulphuric acid. Biochim. Biophys. Acta 10, 499–511 (1953)CrossRefGoogle Scholar
  15. 15.
    Morais, J.P.S., Rosa, M.F., De Souza Filho, M.M., Nascimento, L.D., Do Nascimento, D.M., Cassales, A.R.: Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr. Polym. 91, 229–235 (2013)CrossRefGoogle Scholar
  16. 16.
    Rivkin, A., Abibtol, T., Nevo, Y., Verker, R., Lapidot, S., Komarov, A., Veldhuis, S., Zilberman, G., Reches, M., Cranston, E.D., Shoseyov, O.: Bionanocomposite films from Resilin-C BD bound to cellulose nanocrystals. Ind. Biotechnol. 11, 44–58 (2015)CrossRefGoogle Scholar
  17. 17.
    Kumar, A., Negi, Y.S., Choudhary, V., Bhardwaj, N.K.: Characterization of cellulose nanocrystals produced by acid-hydrolysis from sugarcane bagasse as agro waste. J. Mater. Phys. Chem. 2(1), 1–8 (2014)Google Scholar
  18. 18.
    Yilgor, N., Köse, C., Terzi, E., Figen, A.K., Ibach, R., Kartal, S.N., Pişkin, S.: Degradation behavior and accelerated weathering of composite boards produced from waste Tetra Pak ® packaging materials. BioResources 9(3), 4784–4807 (2014)CrossRefGoogle Scholar
  19. 19.
    Flauzino Neto, W.P., Silvérioa, H., Dantas, N.O., Pasquini, D.: Extraction and characterization of cellulose nanocrystals from agro-industrial residue–Soy hulls. Ind. Crops Prod. 42, 480–488 (2013)CrossRefGoogle Scholar
  20. 20.
    Park, S., Baker, J.O., Himmel, M.E., Parilla, P.A., Johnson, D.K.: Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulose performance. Biotechnol. Biofuels 3, 1–10 (2010)CrossRefGoogle Scholar
  21. 21.
    Jacquet, N., Quiévy, N., Vanderghem, C., Janas, S., Blecker, C., Wathelet, B., Devaux, J., Paquot, M.: Influence of steam explosion on the thermal stability of cellulose fibres. Polym. Degrad. Stab. 96, 1582–1588 (2011)CrossRefGoogle Scholar
  22. 22.
    Yoon, S.-Y., Han, S.-H., Shin, S.-J.: The effect of hemicelluloses and lignin on acid hydrolysis of cellulose. Energy 77, 19–24 (2014)CrossRefGoogle Scholar
  23. 23.
    Lee, H.V., Hamid, S.B.A., Zain, S.K.: Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. Sci. World J. 2014, 1–20 (2014)Google Scholar
  24. 24.
    Dufresne, A.: Nanocellulose: a new ageless bionanomaterial. Mater. Today 16(6), 220–227 (2013)CrossRefGoogle Scholar
  25. 25.
    Peng, B.L., Dhar, N., Liu, H.L., Tam, K.C.: Chemistry and applications of nanocrystalline cellulose and its derivatives: a nanotechnology perspective. Can. J. Chem. Eng. 9999, 1191–1206 (2011)CrossRefGoogle Scholar
  26. 26.
    Thimm, J.C., Burritt, D.J., Ducker, W.A., Melton, L.D.: Celery (Apium graveolens L) parenchyma cell walls examined by atomic force microscopy: effect of dehydration on cellulose microfibrils. Planta 212(1), 1–25 (2000)CrossRefGoogle Scholar
  27. 27.
    Azeredo, H.M.C., Mattoso, L.H.C., Wood, D., Williams, T.G., Avena-bustillos, R.J., McHugh, T.H.: Nanocomposite edible films from mango puree reinforced with cellulose nanofibers. J. Food Sci. 74(5), 31–35 (2009)CrossRefGoogle Scholar
  28. 28.
    Alemdar, A., Sain, M.: Isolation and characterization of nanofibers from agriculture residues wheat straw and soy hulls. Bioresour. Technol. 99(6), 1664–1671 (2008)CrossRefGoogle Scholar
  29. 29.
    Sannigrahi, P., Ragauskas, A.J., Miller, S.J.: Effects of two-stage dilute acid pretreatment on the structure and composition of lignin and cellulose in loblolly pine. BioEnergy Res. 1, 205–214 (2008)CrossRefGoogle Scholar
  30. 30.
    Kim, T.H., Kim, J.S., Sunwoo, C., Lee, Y.Y.: Pretreatment of corn stover by aqueous ammonia. Bioresour. Technol. 90, 39–47 (2003)CrossRefGoogle Scholar
  31. 31.
    Kargarzadeh, H., Ahmad, I., Abdullah, I., Dufresne, A., Zainudin, S., Sheltami, R.: Effects of hydrolysis conditions on the morphology, crystallinity and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers. Cellulose 19(3), 855–866 (2012)CrossRefGoogle Scholar
  32. 32.
    Diop, C.I.K., Lavoie, J.M., Huneault, M.A.: Structural changes of Salix miyabeana cellulose fibres during dilute-acid steam explosion: impact of reaction temperature and retention time. Carbohydr. Polym. 119, 8–17 (2015)CrossRefGoogle Scholar
  33. 33.
    Chan, C.H., Chia, C.H., Zakaria, S., Ahmad, I., Dufresne, A.: Production and characterisation of cellulose and nanocrystalline cellulose from kenaf core wood. BioResources 8(1), 785–794 (2013)Google Scholar
  34. 34.
    Krishnamachari, P., Hashaikeh, R., Chiesa, M., Gad El Rab, K.R.M.: Effects of acid hydrolysis time on cellulose nanocrystals properties: nanoindentation and thermogravimetric studies. Cellulose. Chem. Technol. 46(1–2), 13–18 (2012)Google Scholar
  35. 35.
    Dobele, G., Rossinskaja, G., Telysheva, G., Meier, D., Faix, O.: Cellulose dehydration and depolymerization reactions during pyrolysis in the presence of phosphoric acid. J. Anal. Appl. Pyrolysis 49, 307–317 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Chérif Ibrahima Khalil Diop
    • 1
    • 2
  • Jean-Michel Lavoie
    • 1
    • 2
    Email author
  1. 1.Department of Chemical and Biotechnological EngineeringUniversité de SherbrookeSherbrookeCanada
  2. 2.Industrial Research Chair on Cellulosic Ethanol and Biocommodities (CRIEC-B)SherbrookeCanada

Personalised recommendations