Skip to main content
Log in

Fast Pyrolysis of Nitrogen-Rich Wood Waste Pretreated by Microwave-Assisted Glycerolysis

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The high nitrogen content in wood waste containing urea formaldehyde from furniture industry hampers its utilization as a clean fuel. Herein, microwave-assisted organosolv pretreatment of wood waste using glycerol as solvent was conducted in a commercial microwave reactor with varying temperature of 120–240 °C for reducing nitrogen content. The elemental analysis shows that up to 88.1 % of nitrogen and 92.9 % of alkali and alkaline earth metals in wood waste can be removed by microwave-assisted glycerolysis. The solid nuclear magnetic resonance spectrometry analysis illustrate that the urea–formaldehyde resin, lignin and hemicellulose fractions in wood waste can also be simultaneously reduced by pretreatment. Raw and pretreated wood waste was subsequently fast pyrolyzed in a semi-batch pyroprobe reactor. The experimental results demonstrate that the relative content of levoglucosan in pyrolysis vapors was significantly enhanced by pretreatment, whereas the relative content of nitrogen-containing compounds was reduced obviously. These findings provide a simple and efficient pretreatment method for reducing the formation of nitrogenous compounds during fast pyrolysis of nitrogen-rich wood waste.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenerg. 38, 68–94 (2012)

    Article  Google Scholar 

  2. Czernik, S., Bridgwater, A.V.: Overview of applications of biomass fast pyrolysis oil. Energ. Fuel 18(2), 590–598 (2004)

    Article  Google Scholar 

  3. Patwardhan, P.R., Satrio, J.A., Brown, R.C., Shanks, B.H.: Product distribution from fast pyrolysis of glucose-based carbohydrates. J. Anal. Appl. Pyrol. 86(2), 323–330 (2009)

    Article  Google Scholar 

  4. Mettler, M.S., Vlachos, D.G., Dauenhauer, P.J.: Top ten fundamental challenges of biomass pyrolysis for biofuels. Energ. Environ. Sci. 5(7), 7797–7809 (2012)

    Article  Google Scholar 

  5. Lam, S.S., Liew, R.K., Jusoh, A., Chong, C.T., Ani, F.N., Chase, H.A.: Progress in waste oil to sustainable energy, with emphasis on pyrolysis techniques. Renew. Sust. Energ. Rev. 53, 741–753 (2016)

    Article  Google Scholar 

  6. Lam, S.S., Liew, R.K., Cheng, C.K., Chase, H.A.: Catalytic microwave pyrolysis of waste engine oil using metallic pyrolysis char. Appl. Catal. B-Environ. 176, 601–617 (2015)

    Article  Google Scholar 

  7. Russell, A.D., Antreou, E.I., Lam, S.S., Ludlow-Palafox, C., Chase, H.A.: Microwave-assisted pyrolysis of HDPE using an activated carbon bed. RSC Adv. 2(17), 6756–6760 (2012)

    Article  Google Scholar 

  8. Carlson, T.R., Cheng, Y.T., Jae, J., Huber, G.W.: Production of green aromatics and olefins by catalytic fast pyrolysis of wood sawdust. Energ. Environ. Sci. 4(1), 145–161 (2011)

    Article  Google Scholar 

  9. Lu, Q.A., Zhang, Z.F., Dong, C.Q., Zhu, X.F.: Catalytic upgrading of biomass fast pyrolysis vapors with nano metal oxides: an analytical Py-GC/MS study. Energies 3(11), 1805–1820 (2010)

    Article  Google Scholar 

  10. Mettler, M.S., Paulsen, A.D., Vlachos, D.G., Dauenhauer, P.J.: Tuning cellulose pyrolysis chemistry: selective decarbonylation via catalyst-impregnated pyrolysis. Catal. Sci. Technol. 4(11), 3822–3825 (2014)

    Article  Google Scholar 

  11. Girods, P., Dufour, A., Rogaume, Y., Rogaume, C., Zoulahan, A.: Thermal removal of nitrogen species from wood waste containing urea formaldehyde and melamine formaldehyde resins. J. Hazard. Mater. 159(2–3), 210–221 (2008)

    Article  Google Scholar 

  12. Bohm, M., Salem, M.Z.M., Srba, J.: Formaldehyde emission monitoring from a variety of solid wood, plywood, blockboard and flooring products manufactured for building and furnishing materials. J. Hazard. Mater. 221, 68–79 (2012)

    Article  Google Scholar 

  13. Du, Z.Y., Mohr, M., Ma, X.C., Cheng, Y.L., Lin, X.G., Liu, Y.H., Zhou, W.G., Chen, P., Ruan, R.: Hydrothermal pretreatment of microalgae for production of pyrolytic bio-oil with a low nitrogen content. Bioresour. Technol. 120, 13–18 (2012)

    Article  Google Scholar 

  14. Risholm-Sundman, M., Vestin, E.: Emissions during combustion of particleboard and glued veneer. Holz Roh Werkst. 63(3), 179–185 (2005)

    Article  Google Scholar 

  15. Girods, P., Dufour, A., Rogaurne, Y., Rogaurne, C., Zoulalian, A.: Pyrolysis of wood waste containing urea-formaldehyde and melamine–formaldehyde resins. J. Anal. Appl. Pyrol. 81(1), 113–120 (2008)

    Article  Google Scholar 

  16. Saleh, S.B., Flensborg, J.P., Shoulaifar, T.K., Sarossy, Z., Hansen, B.B., Egsgaard, H., DeMartini, N., Jensen, P.A., Glarborg, P., Dam-Johansen, K.: Release of chlorine and sulfur during biomass torrefaction and pyrolysis. Energ. Fuel 28(6), 3738–3746 (2014)

    Article  Google Scholar 

  17. Zheng, A.Q., Zhao, Z.L., Chang, S., Huang, Z., Wang, X.B., He, F., Li, H.B.: Effect of torrefaction on structure and fast pyrolysis behavior of corncobs. Bioresour. Technol. 128, 370–377 (2013)

    Article  Google Scholar 

  18. Sun, F., Chen, H.Z.: Organosolv pretreatment by crude glycerol from oleochemicals industry for enzymatic hydrolysis of wheat straw. Bioresour. Technol. 99(13), 5474–5479 (2008)

    Article  Google Scholar 

  19. Zheng, A.Q., Zhao, Z.L., Huang, Z., Zhao, K., Wei, G.Q., Jiang, L.Q., Wang, X.B., He, F., Li, H.B.: Overcoming biomass recalcitrance for enhancing sugar production from fast pyrolysis of biomass by microwave pretreatment in glycerol. Green Chem. 17(2), 1167–1175 (2015)

    Article  Google Scholar 

  20. Channiwala, S.A., Parikh, P.P.: A unified correlation for estimating HHV of solid, liquid and gaseous fuels. Fuel 81(8), 1051–1063 (2002)

    Article  Google Scholar 

  21. Sannigrahi, P., Ragauskas, A.J.: Fundamentals of biomass pretreatment by fractionation. In: Wyman, C.E. (ed.) Aqueous Pretreatment of Plant Biomass for Biological and Chemical Conversion to Fuels and Chemicals, pp. 201–222. Wiley, New York (2013)

    Chapter  Google Scholar 

  22. Mcdonough, T.J.: The chemistry of organosolv delignification. Tappi J. 76(8), 186–193 (1993)

    Google Scholar 

  23. Kim, K.H., Kim, J.Y., Cho, T.S., Choi, J.W.: Influence of pyrolysis temperature on physicochemical properties of biochar obtained from the fast pyrolysis of pitch pine (Pinus rigida). Bioresour. Technol. 118, 158–162 (2012)

    Article  Google Scholar 

  24. Zheng, A., Jiang, L., Zhao, Z., Huang, Z., Zhao, K., Wei, G., Wang, X., He, F., Li, H.: Impact of torrefaction on the chemical structure and catalytic fast pyrolysis behavior of hemicellulose, lignin, and cellulose. Energy Fuels 29(12), 8027–8034 (2015)

    Article  Google Scholar 

  25. Melkior, T., Jacob, S., Gerbaud, G., Hediger, S., Le Pape, L., Bonnefois, L., Bardet, M.: NMR analysis of the transformation of wood constituents by torrefaction. Fuel 92(1), 271–280 (2012)

    Article  Google Scholar 

  26. Panangama, L.A., Pizzi, A.: A C-13-NMR analysis method for MUF and MF resin strength and formaldehyde emission. J. Appl. Polym. Sci. 59(13), 2055–2068 (1996)

    Article  Google Scholar 

  27. Taylor, R., Pragnell, R.J., Mclaren, J.V., Snape, C.E.: Evaluation of NMR-spectroscopy for the quantitative characterization of urea formaldehyde resins. Talanta 29(6), 489–494 (1982)

    Article  Google Scholar 

  28. Steinhof, O., Kibrik, E.J., Scherr, G., Hasse, H.: Quantitative and qualitative H-1, C-13, and N-15 NMR spectroscopic investigation of the urea-formaldehyde resin synthesis. Magn. Reson. Chem. 52(4), 138–162 (2014)

    Article  Google Scholar 

  29. Wen, J.L., Sun, S.L., Yuan, T.Q., Xu, F., Sun, R.C.: Understanding the chemical and structural transformations of lignin macromolecule during torrefaction. Appl. Energ. 121, 1–9 (2014)

    Article  Google Scholar 

  30. Dalluge, D.L., Daugaard, T., Johnston, P., Kuzhiyil, N., Wright, M.M., Brown, R.C.: Continuous production of sugars from pyrolysis of acid-infused lignocellulosic biomass. Green Chem. 16(9), 4144–4155 (2014)

    Article  Google Scholar 

  31. Patwardhan, P.R., Brown, R.C., Shanks, B.H.: Understanding the fast pyrolysis of lignin. Chemsuschem 4(11), 1629–1636 (2011)

    Article  Google Scholar 

  32. Garcia-Perez, M., Wang, S., Shen, J., Rhodes, M., Lee, W.J., Li, C.Z.: Effects of temperature on the formation of lignin-derived oligomers during the fast pyrolysis of Mallee woody biomass. Energ. Fuel 22(3), 2022–2032 (2008)

    Article  Google Scholar 

  33. Vinu, R., Broadbelt, L.J.: A mechanistic model of fast pyrolysis of glucose-based carbohydrates to predict bio-oil composition. Energ. Environ. Sci. 5(12), 9808–9826 (2012)

    Article  Google Scholar 

  34. Mullen, C.A., Boateng, A.A.: Characterization of water insoluble solids isolated from various biomass fast pyrolysis oils. J. Anal. Appl. Pyrol. 90(2), 197–203 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the National Natural Science Foundation of China (Grants 51376186 and 21406227), the Natural Science Foundation of Guangdong Province, China (Grant 2014A030313672), and the Science and Technology Planning Project of Guangdong Province, China (Grants 2014B020216004 and 2015A020215024) for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zengli Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, A., Zhao, K., Zhao, Z. et al. Fast Pyrolysis of Nitrogen-Rich Wood Waste Pretreated by Microwave-Assisted Glycerolysis. Waste Biomass Valor 8, 349–358 (2017). https://doi.org/10.1007/s12649-016-9578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9578-1

Keywords

Navigation