Skip to main content

Advertisement

Log in

Agricultural Waste Management Through Energy Producing Biorefineries: The Colombian Case

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The energy demand is increasing dramatically during last years. Due to this, biomass has been considered as an interesting alternative for renewable energy production. The objective of this work was to evaluate the production of bioethanol, biogas and electricity for using plantain pseudostem and rice husk produced as agricultural wastes in Colombia through a biorefinery scheme. The chemical characterization of these residues was carried out to get the input data for the conceptual design of fermentation, anaerobic digestion and combustion processes. Finally a techno-economic evaluation was developed to compare the potential of each process. The rice husk biorefinery showed higher yields of biogas and electricity compared to the plantain pseudostem case. In general terms, it was observed that production costs of bioethanol (0.48 USD/kg against 0.82 USD/kg), biogas (0.27 USD/m3 against 0.56 USD/m3) and electricity (0.02 USD/kW against 0.03 USD/kW) were kept lower under a biorefinery approach compared to the stand-alone processes for the rice husk case. For plantain case all the results were negative both for stand alone and biorefinery cases. This work concluded that it is possible to take advantage of some agricultural wastes generated in Colombia under biorefinery scheme to produce bioethanol, biogas and electricity as source of energy to supply a fraction of the energetic demand in this country.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Enerdata: Total Energy Consumption. In: Global Energy Statistical Yearbook 2014. https://yearbook.enerdata.net/#energy-consumption-data.html (2014). Accessed 15 May 2015

  2. Sánchez, Ó.J., Cardona, C.A.: Conceptual design of cost-effective and environmentally friendly configurations for fuel ethanol production from sugarcane by knowledge-based process synthesis. Bioresour. Technol. 104(2012), 305–314 (2012)

    Article  Google Scholar 

  3. Febebiocombustibles: Estadísticas Producción de alcohol carburante. http://www.fedebiocombustibles.com/v3/nota-web-id-487.htm (2014)

  4. Valencia, M.J., Cardona, C.A.: The Colombian biofuel supply chains: the assessment of current and promising scenarios based on environmental goals. Energy Policy 67, 232–242 (2014)

    Article  Google Scholar 

  5. Pantamas, P., Chaiprasert, P., Tanticharoen, M.: Anaerobic digestion of glucose by Bacillus licheniformis and Bacillus coagulans at low and high alkalinity. Asian J Energy Environ. 4, 1–17 (2003)

    Google Scholar 

  6. Yang, L., Xu, F., Ge, X., Li, Y.: Challenges and strategies for solid-state anaerobic digestion of lignocellulosic biomass. Renew Sustain Energy Rev. 44, 824–834 (2015)

    Article  Google Scholar 

  7. Cohen, A., Zoetemeyer, R.J., Van Deursen, A., Van Andel, J.G.: Anaerobic digestion of glucose with separated acid production and methane formation. Water Res. 13, 571–580 (1979)

    Article  Google Scholar 

  8. Rincon, L.E., Moncada Botero, J., Cardona Alzate, C.A.: Catalytic Systems for Integral Transformations of Oil Plants through Biorefinery concept, 1st edn. Universidad Nacional de Colombia sede Manizales, Manizales (2013)

    Google Scholar 

  9. SIAC and IGAC: Uso Actual de los Suelos en Colombia. In: Presión sobre el suelo. https://www.siac.gov.co/contenido/contenido.aspx?catID=832&conID=1301 (2011). Accessed 28 July 2015

  10. Pinzi, S., Dorado, M.P.: Feedstocks for advanced biodiesel production. Advances in Biodiesel Production, pp. 204–231. Woodhead Publishing Limited, Cambridge (2012)

    Google Scholar 

  11. Moncada, J., Tamayo, J.A., Cardona, C.A.: Integrating first, second, and third generation biorefineries: incorporating microalgae into the sugarcane biorefinery. Chem. Eng. Sci. 118, 126–140 (2014)

    Article  Google Scholar 

  12. Lennartsson, P.R., Erlandsson, P., Taherzadeh, M.J.: Integration of the first and second generation bioethanol processes and the importance of by-products. Bioresour. Technol. 165, 3–8 (2014)

    Article  Google Scholar 

  13. Alzate, C.A., Sánchez, O.J., Ramírez, J.A., Rincón, L.E.: Biodegradación de residuos orgánicos de plazas de mercado. Rev. Colomb. Biotecnol. 6, 78–89 (2004)

    Google Scholar 

  14. Espinal, C. F., Martínez Covaleda, H. J., Peña Marin, Y.: La cadena del Plátano en Colombia. Una mirada global de su Estructura y Dinámica. Ministerio de Agricultura y Desarrollo Rural Observatorio Agrocadenas Colombia, Bogotá (2005)

  15. Pérez, R.: Roots, tubers, bananas and plantains. In: Speedy, A.W. (ed.) Feeding Pigs in the Tropics. FAO, Rome (1997)

  16. Mazzeo Meneses, M., León Agatón, L., Mejía Gutiérrez, L.F., Guerrero Mendieta, L.E., Botero López, J.D.: Aprovechamiento industrial de residuos de cosecha y poscosecha del plátano en el departamento de Caldas. Rev. Educ. Ing. 9, 128–139 (2010)

    Google Scholar 

  17. DNP: Anuario Estadistico del Sector Agropecuario-MinAgricultura. Departamento Nacional de Planeación, Bogotá (2008)

    Google Scholar 

  18. Espinal, C. F., Martínez Covaleda, H. J., Acevedo Gaitán, X.: La Cadena del Arroz en Colombia. Una Mirada Global de su Estructura y Dinámica 1991–2005 (2005)

  19. Kumar, U., Bandyopadhyay, M.: Sorption of cadmium from aqueous solution using pretreated rice husk. Bioresour. Technol. 97(1), 104–109 (2006)

    Article  Google Scholar 

  20. Soltani, N., Bahrami, A., Pech-Canul, M.I., González, L.A.: Review on the physicochemical treatments of rice husk for production of advanced materials. Chem. Eng. J. 264, 899–935 (2014)

    Article  Google Scholar 

  21. Jeetah, P., Golaup, N., Buddynauth, K.: Production of cardboard from waste rice husk. J. Environ. Chem. Eng. 3(1), 52–59 (2015)

    Article  Google Scholar 

  22. Prada, A., Cortés, C.E.: Thermal decomposition of rice husk: an alternative integral use. Rev. Orinoquia 3(1), 155–170 (2010)

    Google Scholar 

  23. Quiceno Villada, D., Mosquera Gutierrez, M. Y.: Alternativas Tecnologicas para el uso de la cascarilla de arroz como combustible. Universidad Autónoma de Occidente (2010)

  24. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.:Determination of Extractives in Biomass. no. January. NREL, Golden, U.S (2008)

  25. Rabemanolontsoa, H., Saka, S.: Holocellulose determination in biomass. In: Zero-Carbon Energy Kyoto 2011: Special Edition of Jointed Symposium of Kyoto, vol. 108, pp. 135–140 (2012)

  26. Han, J.S., Rowell, J.S.: Chemical composition of fibers. In: Paper and Composites from Agro-based Resources, pp. 83–134 (1997)

  27. López, J., Trejos, V.M., Cardona, C.A.: Parameters estimation and VLE calculation in asymmetric binary mixtures containing carbon dioxide + n-alkanols. Fluid Phase Equilib. 275, 1–7 (2009)

    Article  Google Scholar 

  28. Esteghllian, A., Hashimoto, A., Fenske, J., Penner, M.H.: Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresour. Technol. 59(1997), 129–136 (1994)

    Google Scholar 

  29. Morales-rodriguez, R., Gernaey, K.V., Meyer, A.S., Sin, G.: A mathematical model for simultaneous saccharification and co-fermentation (SSCF) of C6 and C5 sugars. Chinese J. Chem. Eng. 19(2), 185–191 (2010)

    Article  Google Scholar 

  30. Birol, G., Doruker, P., Kardar, B., Onsan, Z., Ulgen, K.: Mathematical description of ethanol fermentation by immobilised Saccharomyces cerevisiae. Process Biochem. 33, 763–771 (1998)

    Article  Google Scholar 

  31. Pitt, W.W., Haag, G.L., Lee, D.D.: Recovery of ethanol from fermentation broths using selective sorption-desorption. Biotechnol. Bioeng. 25, 123–131 (1983)

    Article  Google Scholar 

  32. Paz Astudillo, I.C., Cardona Alzate, C.A.: Importance of stability study of continuous systems for ethanol production. J. Biotechnol. 151(1), 43–55 (2011)

    Article  Google Scholar 

  33. Barakat, A., Monlau, F., Steyer, J., Carrere, H.: Effect of lignin-derived and furan compounds found in lignocellulosic hydrolysates on biomethane production. Bioresour. Technol. 104, 90–99 (2012)

    Article  Google Scholar 

  34. Deublein, D., Steinhauser, A.: A Biogas from Waste and Renewable Resources: An Introduction, 1st edn. Wiley, New York (2010)

    Book  Google Scholar 

  35. Rincón, L. E., Moncada, J., Cardona, C. A.:Analysis of cogeneration as a tool to improve the viability of oilseed based biorefineries. In: Catalytic Systems for Integral Transformations of Oil Plants Through Biorefinery Concept, pp. 77–96 (2013)

  36. Gissén, C., Prade, T., Kreuger, E., Nges, I.A., Rosenqvist, H., Svensson, S.E., Lantz, M., Mattsson, J.E., Börjesson, P., Björnsson, L.: Comparing energy crops for biogas production—yields, energy input and costs in cultivation using digestate and mineral fertilisation. Biomass Bioenergy 64, 199–210 (2014)

    Article  Google Scholar 

  37. Fedebiocombustibles: Precios de Etanol. http://www.fedebiocombustibles.com/ (2015). Accessed 15 May 2015

  38. Moncada, J., Jaramillo, J.J., Higuita, J.C., Younes, C., Cardona, C.A.: Production of bioethanol using Chlorella vulgaris cake: a technoeconomic and environmental assessment in the colombian context. Ind. Eng. Chem. Res. 47, 16786–16794 (2013)

    Article  Google Scholar 

  39. Amiri, H., Karimi, K., Zilouei, H.: Organosolv pretreatment of rice straw for efficient acetone, butanol, and ethanol production. Bioresour. Technol. 152, 450–456 (2014)

    Article  Google Scholar 

  40. Daza Serna, L.V., Orrego Alzate, C.E., Cardona Alzate, C.A.: Supercritical fluids as a green technology for the pretreatment of lignocellulosic biomass. Bioresour. Technol. 199, 113–120 (2015)

    Article  Google Scholar 

  41. Yoon, S.J., Son, Y.-I., Kim, Y.-K., Lee, J.-G.: Gasification and power generation characteristics of rice husk and rice husk pellet using a downdraft fixed-bed gasifier. Renew. Energy 42, 163–167 (2012)

    Article  Google Scholar 

  42. Abbas, A., Ansumali, S.: Global potential of rice husk as a renewable feedstock for ethanol biofuel production. Bioenergy Res. 3(4), 328–334 (2010)

    Article  Google Scholar 

  43. Quintero, J.A., Moncada, J., Cardona, C.A.: Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach. Bioresour. Technol. 139(2013), 300–307 (2013)

    Article  Google Scholar 

  44. Ingale, S., Joshi, S.J., Gupte, A.: Production of bioethanol using agricultural waste: Banana pseudo stem. Braz. J. Microbiol. 45(3), 885–892 (2014)

    Article  Google Scholar 

  45. Duque, S.H., Cardona, C.A., Moncada, J.: Techno-economic and environmental analysis of ethanol production from 10 agroindustrial residues in Colombia. Energy Fuels 29(2), 775–783 (2015)

    Google Scholar 

  46. Pei, P., Zhang, C.M., Li, J.H., Chang, S., Li, S.Z., Wang, J.L., Zhao, M.X., Jiang, L., Yu, M.H., Chen, X.L.: Optimization of NaOH pretreatment for enhancement of biogas production of banana pseudo-stem fiber using response surface methodology. Bioresources 9(3), 5073–5087 (2014)

    Article  Google Scholar 

  47. Daza, L., Betancourt, R., Cardona, C.: Supercritical assisted pretreatment of cassava and plantain residues. In: AIChE, Annual Meeting (2015)

  48. Daza, L., Pisarenko, Y., Duarte, L., Carvalheiro, F., Cardona, C.:Ultrasound assisted pretreatment of rice husk and plantain. In: AIChE, Annual Meeting (2015)

  49. Jaramillo, J.J., Naranjo, J.M., Cardona, C.A.: Growth and oil extraction from Chlorella vulgaris: a techno-economic and environmental assessment. Ind. Eng. Chem. Res. 51, 10503–10508 (2012)

    Article  Google Scholar 

  50. Zhang, Z.Y., Jin, B., Kelly, J.M.: Production of lactic acid from renewable materials by Rhizopus fungi. Biochem. Eng. J. 35(3), 251–263 (2007)

    Article  Google Scholar 

  51. Manilal, V.B., Sony, J.: Banana pseudostem characterization and its fiber property evaluation on physical and bioextraction. J. Nat. Fibers 8, 1–12 (2011)

    Article  Google Scholar 

  52. Garcia, A.: Composición Química de la harina de residuos foliares del Plátano (Musa Paradisíaca). Rev. Comput. Prod. Porc. 3, 63–68 (1996)

    Google Scholar 

  53. Srinivas, T., Reddy, B.V.: Hybrid solar-biomass power plant without energy storage. Case Stud. Therm. Eng. 2, 75–81 (2014)

    Article  Google Scholar 

  54. Quintero, J., Moncada, J., Cardona, C.: Techno-economic analysis of bioethanol production from lignocellulosic residues in Colombia: a process simulation approach. Bioresour. Technol. 139, 300–307 (2013)

    Article  Google Scholar 

  55. Cordeiro, N., Belgacem, M.N., Torres, I.C., Moura, J.C.V.P.: Chemical composition and pulping of banana pseudo-stems. Ind. Crops Prod. 19(2004), 147–154 (2003)

    Google Scholar 

Download references

Acknowledgments

The authors express their gratitude to the Universidad Nacional de Colombia at Manizales, the Biotechnology and Angroindustry Institute as well as to COLCIENCIAS for the financial support of this research through the program ‘Jóvenes Investigadores, Convocatoria 617 de 2013’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. A. Cardona Alzate.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Daza Serna, L.V., Solarte Toro, J.C., Serna Loaiza, S. et al. Agricultural Waste Management Through Energy Producing Biorefineries: The Colombian Case. Waste Biomass Valor 7, 789–798 (2016). https://doi.org/10.1007/s12649-016-9576-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9576-3

Keywords

Navigation