Skip to main content

Drying Kinetic Analysis of Municipal Solid Waste Using Modified Page Model and Pattern Search Method

Abstract

This work studied the drying kinetics of the organic fractions of municipal solid waste (MSW) samples with different initial moisture contents and presented a new method for determination of drying kinetic parameters. A series of drying experiments at different temperatures were performed by using a thermogravimetric technique. Based on the modified Page drying model and the general pattern search method, a new drying kinetic method was developed using multiple isothermal drying curves simultaneously. The new method fitted the experimental data more accurately than the traditional method. Drying kinetic behaviors under extrapolated conditions were also predicted and validated. The new method indicated that the drying activation energies for the samples with initial moisture contents of 31.1 and 17.2 % on wet basis were 25.97 and 24.73 kJ mol−1. These results are useful for drying process simulation and industrial dryer design. This new method can be also applied to determine the drying parameters of other materials with high reliability.

Graphical Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Abbreviations

MR:

Moisture ratio

MSW:

Municipal solid waste

O.F.:

Objective function

RMSE:

Root mean square error

D 0 :

Arrhenius preexponential factor

D eff :

Effective moisture diffusivity

E a :

Drying activation energy

k :

Pseudo moisture diffusivity

k 0 :

Pseudo preexponential factor

L 0 :

Half-thickness of the slab

m :

Number of drying temperatures

n :

Exponent

n d :

Number of data points

R :

Universal gas constant

R2 :

Coefficient of determination

t :

Time

T :

Temperature

w 0 :

Initial moisture content

w e :

Equilibrium moisture content

w t :

Moisture content at any particular time

x :

Spatial dimension

λ :

Empirical constant

cal :

Calculated data

exp :

Experimental data

i :

The ith temperature

j :

The jth data point

References

  1. 1.

    Basso, D., Weiss-Hortala, E., Patuzzi, F., Castello, D., Baratieri, M., Fiori, L.: Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment. Bioresour. Technol. 182, 217–224 (2015)

    Article  Google Scholar 

  2. 2.

    Hoornweg, D., Bhada-Tata, P. What a waste: a global review of solid waste management. World Bank Report: Washington, DC 20433, USA (2012)

  3. 3.

    Jayasinghe, P.A., Hettiaratchi, J.P.A., Mehrotra, A.K., Kumar, S.: Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement. Bioresour. Technol. 162, 279–282 (2014)

    Article  Google Scholar 

  4. 4.

    Chandrappa, R., Brown, J.: Solid Waste Management: Principles and Practice. Springer, Berlin (2012)

    Book  Google Scholar 

  5. 5.

    Chen, D., Yin, L., Wang, H., He, P.: Pyrolysis technologies for municipal solid waste: a review. Waste Manag. 34(12), 2466–2486 (2014)

    Article  Google Scholar 

  6. 6.

    Yuan, X., Wen, B., Ma, X., Zhu, W., Wang, X., Chen, S., Cui, Z.: Enhancing the anaerobic digestion of lignocellulose of municipal solid waste using a microbial pretreatment method. Bioresour. Technol. 154, 1–9 (2014)

    Article  Google Scholar 

  7. 7.

    Tawfik, A., El-Qelish, M.: Key factors affecting on bio-hydrogen production from co-digestion of organic fraction of municipal solid waste and kitchen wastewater. Bioresour. Technol. 168, 106–111 (2014)

    Article  Google Scholar 

  8. 8.

    Pandey, D.S., Pan, I., Das, S., Leahy, J.J., Kwapinski, W.: Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier. Bioresour. Technol. 179, 524–533 (2015)

    Article  Google Scholar 

  9. 9.

    Yang, Y., Brammer, J.G., Mahmood, A.S.N., Hornung, A.: Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour. Technol. 169, 794–799 (2014)

    Article  Google Scholar 

  10. 10.

    Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012)

    Article  Google Scholar 

  11. 11.

    Banks, S.W., Nowakowski, D.J., Bridgwater, A.V.: Fast pyrolysis processing of surfactant washed Miscanthus. Fuel Process. Technol. 128, 94–103 (2014)

    Article  Google Scholar 

  12. 12.

    Czernik, S., Bridgwater, A.V.: Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2), 590–598 (2004)

    Article  Google Scholar 

  13. 13.

    Perazzini, H., Freire, F.B., Freire, F.B., Freire, J.T.: Thermal treatment of solid wastes using drying technologies: a review. Dry. Technol. (2015). doi:10.1080/07373937.2014.995803

    Google Scholar 

  14. 14.

    Chen, D., Zhang, Y., Zhu, X.: Drying kinetics of rice straw under isothermal and nonisothermal conditions: a comparative study by thermogravimetric analysis. Energy Fuels 26(7), 4189–4194 (2012)

    Article  Google Scholar 

  15. 15.

    Jamaleddine, T.J., Ray, M.B.: Application of computational fluid dynamics for simulation of drying processes: a review. Dry. Technol. 28(2), 120–154 (2010)

    Article  Google Scholar 

  16. 16.

    Kucuk, H., Midilli, A., Kilic, A., Dincer, I.: A review on thin-layer drying-curve equations. Dry. Technol. 32(7), 757–773 (2014)

    Article  Google Scholar 

  17. 17.

    Chen, D., Zheng, Y., Zhu, X.: In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages. Bioresour. Technol. 131, 40–46 (2013)

    Article  Google Scholar 

  18. 18.

    Cai, J., Chen, S.: Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Drying Technol. 26(12), 1464–1468 (2008)

    Article  Google Scholar 

  19. 19.

    Joardder, M.U., Karim, A., Kumar, C., Brown, R.J.: Determination of effective moisture diffusivity of banana using thermogravimetric analysis. Proc. Eng. 90, 538–543 (2014)

    Article  Google Scholar 

  20. 20.

    Mujumdar, A.S.: Handbook of Industrial Drying, 3rd edn. CRC Press, Boca Raton (2006)

    Book  Google Scholar 

  21. 21.

    Erbay, Z., Icier, F.: A review of thin layer drying of foods: theory, modeling, and experimental results. Crit. Rev. Food Sci. Nutr. 50(5), 441–464 (2010)

    Article  Google Scholar 

  22. 22.

    White, G., Bridges, T., Gewer, O., Ross, I. Seed Coat Devage in Thin Layer Drying of Soybeans as Affected by Drying Conditions. ASAE Paper No. 3052 (1978)

  23. 23.

    Dadalı, G., Apar, D.K., Özbek, B.: Estimation of effective moisture diffusivity of okra for microwave drying. Dry. Technol. 25(9), 1445–1450 (2007)

    Article  Google Scholar 

  24. 24.

    Venkataraman, P.: Applied Optimization with MATLAB Programming. Wiley, New York (2009)

    Google Scholar 

  25. 25.

    Messac, A.: Optimization in Practice with MATLAB. Cambridge University Press, Cambridge (2015)

    MATH  Google Scholar 

  26. 26.

    Demirbas, A.: Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. J. Anal. Appl. Pyrol. 71(2), 803–815 (2004)

    Article  Google Scholar 

  27. 27.

    Reddy, P.J.: Municipal Solid Waste Management: Processing—Energy Recovery—Global Examples. Book Syndicate, Kolkata (2011)

    Book  Google Scholar 

  28. 28.

    Baker, C.G.J., Baker, C.: Industrial Drying of Foods. Springer, Berlin (1997)

    Book  Google Scholar 

  29. 29.

    Mujumdar, A.S.: Handbook of Industrial Drying, 4th edn. Taylor & Francis, Park Drive (2014)

    Google Scholar 

Download references

Acknowledgments

Junmeng Cai and Wenfei Cai would like to acknowledge the financial support from the IRSES ECOFUEL programme (FP7-PEOPLE-2009-IRSES Grant 246772). Yang Yang would like to acknowledge the support from the EPSRC Supergen Bioenergy Challenge “PyroAD” Project (EP/K036793/1).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Junmeng Cai.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Appendix: MATLAB Code for the Objective Function (ObjectiveFunction.m)

Appendix: MATLAB Code for the Objective Function (ObjectiveFunction.m)

figureb

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cai, J., Yang, Y., Cai, W. et al. Drying Kinetic Analysis of Municipal Solid Waste Using Modified Page Model and Pattern Search Method. Waste Biomass Valor 8, 301–312 (2017). https://doi.org/10.1007/s12649-016-9570-9

Download citation

Keywords

  • Municipal solid waste (MSW)
  • Drying kinetics
  • Pattern search method
  • Drying activation energy
  • Thermogravimetric technique