Advertisement

Waste and Biomass Valorization

, Volume 8, Issue 2, pp 301–312 | Cite as

Drying Kinetic Analysis of Municipal Solid Waste Using Modified Page Model and Pattern Search Method

  • Junmeng Cai
  • Yang Yang
  • Wenfei Cai
  • Tony Bridgwater
Original Paper

Abstract

This work studied the drying kinetics of the organic fractions of municipal solid waste (MSW) samples with different initial moisture contents and presented a new method for determination of drying kinetic parameters. A series of drying experiments at different temperatures were performed by using a thermogravimetric technique. Based on the modified Page drying model and the general pattern search method, a new drying kinetic method was developed using multiple isothermal drying curves simultaneously. The new method fitted the experimental data more accurately than the traditional method. Drying kinetic behaviors under extrapolated conditions were also predicted and validated. The new method indicated that the drying activation energies for the samples with initial moisture contents of 31.1 and 17.2 % on wet basis were 25.97 and 24.73 kJ mol−1. These results are useful for drying process simulation and industrial dryer design. This new method can be also applied to determine the drying parameters of other materials with high reliability.

Graphical Abstract

Keywords

Municipal solid waste (MSW) Drying kinetics Pattern search method Drying activation energy Thermogravimetric technique 

List of symbols

MR

Moisture ratio

MSW

Municipal solid waste

O.F.

Objective function

RMSE

Root mean square error

D0

Arrhenius preexponential factor

Deff

Effective moisture diffusivity

Ea

Drying activation energy

k

Pseudo moisture diffusivity

k0

Pseudo preexponential factor

L0

Half-thickness of the slab

m

Number of drying temperatures

n

Exponent

nd

Number of data points

R

Universal gas constant

R2

Coefficient of determination

t

Time

T

Temperature

w0

Initial moisture content

we

Equilibrium moisture content

wt

Moisture content at any particular time

x

Spatial dimension

λ

Empirical constant

Subscripts

cal

Calculated data

exp

Experimental data

i

The ith temperature

j

The jth data point

Notes

Acknowledgments

Junmeng Cai and Wenfei Cai would like to acknowledge the financial support from the IRSES ECOFUEL programme (FP7-PEOPLE-2009-IRSES Grant 246772). Yang Yang would like to acknowledge the support from the EPSRC Supergen Bioenergy Challenge “PyroAD” Project (EP/K036793/1).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

References

  1. 1.
    Basso, D., Weiss-Hortala, E., Patuzzi, F., Castello, D., Baratieri, M., Fiori, L.: Hydrothermal carbonization of off-specification compost: a byproduct of the organic municipal solid waste treatment. Bioresour. Technol. 182, 217–224 (2015)CrossRefGoogle Scholar
  2. 2.
    Hoornweg, D., Bhada-Tata, P. What a waste: a global review of solid waste management. World Bank Report: Washington, DC 20433, USA (2012)Google Scholar
  3. 3.
    Jayasinghe, P.A., Hettiaratchi, J.P.A., Mehrotra, A.K., Kumar, S.: Reaction mechanisms and rate constants of waste degradation in landfill bioreactor systems with enzymatic-enhancement. Bioresour. Technol. 162, 279–282 (2014)CrossRefGoogle Scholar
  4. 4.
    Chandrappa, R., Brown, J.: Solid Waste Management: Principles and Practice. Springer, Berlin (2012)CrossRefGoogle Scholar
  5. 5.
    Chen, D., Yin, L., Wang, H., He, P.: Pyrolysis technologies for municipal solid waste: a review. Waste Manag. 34(12), 2466–2486 (2014)CrossRefGoogle Scholar
  6. 6.
    Yuan, X., Wen, B., Ma, X., Zhu, W., Wang, X., Chen, S., Cui, Z.: Enhancing the anaerobic digestion of lignocellulose of municipal solid waste using a microbial pretreatment method. Bioresour. Technol. 154, 1–9 (2014)CrossRefGoogle Scholar
  7. 7.
    Tawfik, A., El-Qelish, M.: Key factors affecting on bio-hydrogen production from co-digestion of organic fraction of municipal solid waste and kitchen wastewater. Bioresour. Technol. 168, 106–111 (2014)CrossRefGoogle Scholar
  8. 8.
    Pandey, D.S., Pan, I., Das, S., Leahy, J.J., Kwapinski, W.: Multi-gene genetic programming based predictive models for municipal solid waste gasification in a fluidized bed gasifier. Bioresour. Technol. 179, 524–533 (2015)CrossRefGoogle Scholar
  9. 9.
    Yang, Y., Brammer, J.G., Mahmood, A.S.N., Hornung, A.: Intermediate pyrolysis of biomass energy pellets for producing sustainable liquid, gaseous and solid fuels. Bioresour. Technol. 169, 794–799 (2014)CrossRefGoogle Scholar
  10. 10.
    Bridgwater, A.V.: Review of fast pyrolysis of biomass and product upgrading. Biomass Bioenergy 38, 68–94 (2012)CrossRefGoogle Scholar
  11. 11.
    Banks, S.W., Nowakowski, D.J., Bridgwater, A.V.: Fast pyrolysis processing of surfactant washed Miscanthus. Fuel Process. Technol. 128, 94–103 (2014)CrossRefGoogle Scholar
  12. 12.
    Czernik, S., Bridgwater, A.V.: Overview of applications of biomass fast pyrolysis oil. Energy Fuels 18(2), 590–598 (2004)CrossRefGoogle Scholar
  13. 13.
    Perazzini, H., Freire, F.B., Freire, F.B., Freire, J.T.: Thermal treatment of solid wastes using drying technologies: a review. Dry. Technol. (2015). doi: 10.1080/07373937.2014.995803 Google Scholar
  14. 14.
    Chen, D., Zhang, Y., Zhu, X.: Drying kinetics of rice straw under isothermal and nonisothermal conditions: a comparative study by thermogravimetric analysis. Energy Fuels 26(7), 4189–4194 (2012)CrossRefGoogle Scholar
  15. 15.
    Jamaleddine, T.J., Ray, M.B.: Application of computational fluid dynamics for simulation of drying processes: a review. Dry. Technol. 28(2), 120–154 (2010)CrossRefGoogle Scholar
  16. 16.
    Kucuk, H., Midilli, A., Kilic, A., Dincer, I.: A review on thin-layer drying-curve equations. Dry. Technol. 32(7), 757–773 (2014)CrossRefGoogle Scholar
  17. 17.
    Chen, D., Zheng, Y., Zhu, X.: In-depth investigation on the pyrolysis kinetics of raw biomass. Part I: kinetic analysis for the drying and devolatilization stages. Bioresour. Technol. 131, 40–46 (2013)CrossRefGoogle Scholar
  18. 18.
    Cai, J., Chen, S.: Determination of drying kinetics for biomass by thermogravimetric analysis under nonisothermal condition. Drying Technol. 26(12), 1464–1468 (2008)CrossRefGoogle Scholar
  19. 19.
    Joardder, M.U., Karim, A., Kumar, C., Brown, R.J.: Determination of effective moisture diffusivity of banana using thermogravimetric analysis. Proc. Eng. 90, 538–543 (2014)CrossRefGoogle Scholar
  20. 20.
    Mujumdar, A.S.: Handbook of Industrial Drying, 3rd edn. CRC Press, Boca Raton (2006)CrossRefGoogle Scholar
  21. 21.
    Erbay, Z., Icier, F.: A review of thin layer drying of foods: theory, modeling, and experimental results. Crit. Rev. Food Sci. Nutr. 50(5), 441–464 (2010)CrossRefGoogle Scholar
  22. 22.
    White, G., Bridges, T., Gewer, O., Ross, I. Seed Coat Devage in Thin Layer Drying of Soybeans as Affected by Drying Conditions. ASAE Paper No. 3052 (1978)Google Scholar
  23. 23.
    Dadalı, G., Apar, D.K., Özbek, B.: Estimation of effective moisture diffusivity of okra for microwave drying. Dry. Technol. 25(9), 1445–1450 (2007)CrossRefGoogle Scholar
  24. 24.
    Venkataraman, P.: Applied Optimization with MATLAB Programming. Wiley, New York (2009)Google Scholar
  25. 25.
    Messac, A.: Optimization in Practice with MATLAB. Cambridge University Press, Cambridge (2015)zbMATHGoogle Scholar
  26. 26.
    Demirbas, A.: Effect of initial moisture content on the yields of oily products from pyrolysis of biomass. J. Anal. Appl. Pyrol. 71(2), 803–815 (2004)CrossRefGoogle Scholar
  27. 27.
    Reddy, P.J.: Municipal Solid Waste Management: Processing—Energy Recovery—Global Examples. Book Syndicate, Kolkata (2011)CrossRefGoogle Scholar
  28. 28.
    Baker, C.G.J., Baker, C.: Industrial Drying of Foods. Springer, Berlin (1997)CrossRefGoogle Scholar
  29. 29.
    Mujumdar, A.S.: Handbook of Industrial Drying, 4th edn. Taylor & Francis, Park Drive (2014)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Junmeng Cai
    • 1
    • 2
  • Yang Yang
    • 2
  • Wenfei Cai
    • 1
  • Tony Bridgwater
    • 2
  1. 1.Key Laboratory of Urban Agriculture (South) Ministry of Agriculture, Biomass Energy Engineering Research Centre, School of Agriculture and BiologyShanghai Jiao Tong UniversityShanghaiChina
  2. 2.Bioenergy Research Group, European Bioenergy Research Institute (EBRI)Aston UniversityBirminghamUK

Personalised recommendations