Skip to main content

Advertisement

Log in

Effect of pH on Continuous Biohydrogen Production from End-of-Life Dairy Products (EoL-DPs) via Dark Fermentation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

To investigate the effect of pH and thus determine the optimal pH value for biohydrogen production from a mixture of End-of-Life Dairy Products (EoL-DPs) through dark fermentation in view of increasing the yield of their subsequent co-digestion with agroindustrial wastes in a two-stage anaerobic digestion system.

Methods

A Continuously Stirred Tank Reactor (CSTR) was operated under mesophilic conditions (37 °C) and hydraulic retention time of 6 days in order to enhance biohydrogen production from a typical mixture of EoL-DPs (93 % milk–5 % yoghurt–2 % cheese, w/w). CSTR experiments were performed to investigate the effect of controlled pH (4.0, 4.5, 4.7, 5.0, 5.3, 5.7) on the production of biohydrogen and Volatile Fatty Acids (VFAs).

Results

The maximum hydrogen yield and productivity (0.84 mol H2/mol carbohydrates consumed and 0.76 L L −1R ·day−1 respectively) was obtained at pH 5.0, whereas the greatest degradation of soluble carbohydrates was observed at pH 4.7. Equally high concentration of total VFAs, 25.1 and 24.6 g/L, was recorded at pH 4.7 and 5.0 respectively. Acetic, butyric and propionic acid were the main volatile fatty acids detected, while lactic acid was identified as a major intermediate metabolite of the studied process which presented an intense accumulation prior to its conversion to butyric and/or acetic acid and hydrogen.

Conclusions

The optimum conversion of the studied EoL-DPs’ mixture to biohydrogen (40.6 mL H2/g VSadded or 24.3 mL H2/g CODadded) was identified at pH 5.0, with hydrogen production being primarily associated with the bioconversion of lactic acid to butyric acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Council Directive 1999/31/EC of 26 April 1999 on the landfill of waste

  2. Perle, M., Kimchie, S., Shelef, G.: Some biochemical aspects of the anaerobic degradation of dairy wastewater. Water Res. 29, 1549–1554 (1995)

    Article  Google Scholar 

  3. Girotto, F., Alibardi, L., Cossu, R.: Food waste generation and industrial uses: a review. Waste Manag 45, 32–41 (2015)

    Article  Google Scholar 

  4. Cantrell, K.B., Ducey, T., Ro, K.S., Hunt, P.G.: Livestock waste-to-bioenergy generation opportunities. Bioresour. Technol. 99, 7941–7953 (2008)

    Article  Google Scholar 

  5. Ince, O.: Performance of a two-phase anaerobic digestion system when treating dairy wastewater. Water Res. 32, 2707–2713 (1998)

    Article  Google Scholar 

  6. Jeyaseelan, S., Matsuo, T.: Effects of phase separation in anaerobic digestion on different substrates. Water Sci. Technol. 31, 153–162 (1995)

    Article  Google Scholar 

  7. De Gioannis, G., Friargiu, M., Massi, E., Muntoni, A., Polettini, A., Pomi, R., Spiga, D.: Biohydrogen production from dark fermentation of cheese whey: influence of pH. Int. J. Hydrogen Energy 39, 20930–20941 (2014)

    Article  Google Scholar 

  8. Alonso, S., Herrero, M., Rendueles, M., Díaz, M.: Residual yoghurt whey for lactic acid production. Biomass Bioenergy 34, 931–938 (2010)

    Article  Google Scholar 

  9. Wan, C., Li, Y., Shahbazi, A., Xiu, S.: Succinic acid production from cheese whey using Actinobacillus succinogenes 130 Z. Appl. Biochem. Biotechnol. 145, 111–119 (2008)

    Article  Google Scholar 

  10. Löser, C., Urit, T., Förster, S., Stukert, A., Bley, T.: Formation of ethyl acetate by Kluyveromyces marxianus on whey during aerobic batch and chemostat cultivation at iron limitation. Appl. Microbiol. Biotechnol. 96, 685–696 (2012)

    Article  Google Scholar 

  11. Ntaikou, I., Antonopoulou, G., Lyberatos, G.: Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valori. 1, 21–39 (2010)

    Article  Google Scholar 

  12. Boyles, D.: Bioenergy Technology-Thermodynamics and Costs. Wiley, New York (1984)

    Google Scholar 

  13. Ghimire, Α., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P.N.L., Esposito, G.: A review on dark fermentative biohydrogen production from organic biomass: process parameters and use of by-products. Appl. Energy 144, 73–95 (2015)

    Article  Google Scholar 

  14. Kotay, S.M., Das, D.: Biohydrogen as a renewable energy resource—prospects and potentials. Int. J. Hydrogen Energy 33, 258–263 (2008)

    Article  Google Scholar 

  15. Dareioti, Μ.Α., Vavouraki, Α.Ι., Kornaros, Μ.: Effect of pH on the anaerobic acidogenesis of agroindustrial wastewaters for maximization of bio-hydrogen production: a lab-scale evaluation using batch tests. Bioresour. Technol. 162, 218–227 (2014)

    Article  Google Scholar 

  16. Rai, P.K., Singh, S.P., Asthana, R.K.: Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation. Bioresour. Technol. 152, 140–146 (2014)

    Article  Google Scholar 

  17. Chandrasekhar, K., Lee, Y.J., Lee, D.W.: Biohydrogen production: strategies to improve process efficiency through microbial routes. Int. J. Mol. Sci. 16, 8266–8293 (2015)

    Article  Google Scholar 

  18. Moreno, R., Escapa, A., Cara, J., Carracedo, B., Gómez, X.: A two-stage process for hydrogen production from cheese whey: integration of dark fermentation and biocatalyzed electrolysis. Int. J. Hydrogen Energy 40, 168–175 (2015)

    Article  Google Scholar 

  19. Dhar, B.R., Elbeshbishy, E., Hafez, H., Lee, H.S.: Hydrogen production from sugar beet juice using an integrated biohydrogen process of dark fermentation and microbial electrolysis cell. Bioresour. Technol. 198, 223–230 (2015)

    Article  Google Scholar 

  20. Gómez, X., Fernández, C., Fierro, J., Sánchez, M.E., Escapa, A., Morán, A.: Hydrogen production: two stage processes for waste degradation. Bioresour. Technol. 102, 8621–8627 (2011)

    Article  Google Scholar 

  21. Giordano, A., Cantu, C., Spagni, A.: Monitoring the biochemical hydrogen and methane potential of the two-stage dark-fermentative process. Bioresour. Technol. 102, 4474–4479 (2011)

    Article  Google Scholar 

  22. Cavinato, C., Bolzonella, D., Fatone, F., Cecchi, F., Pavan, P.: Optimization of two-phase thermophilic anaerobic digestion of biowaste for hydrogen and methane production through reject water recirculation. Bioresour. Technol. 102, 8605–8611 (2011)

    Article  Google Scholar 

  23. Luo, G., Xie, L., Zhou, Q., Angelidaki, I.: Enhancement of bioenergy production from organic wastes by two-stage anaerobic hydrogen and methane production process. Bioresour. Technol. 102, 8700–8706 (2011)

    Article  Google Scholar 

  24. Schievano, A., Tenca, A., Lonati, S., Manzini, E., Adani, F.: Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Appl. Energy 124, 335–342 (2014)

    Article  Google Scholar 

  25. Hawkes, F.R., Dinsdal, R., Hawkes, D.L., Hussy, I.: Sustainable fermentative hydrogen production: challenges for process optimisation. Int. J. Hydrogen Energy 27, 1339–1347 (2002)

    Article  Google Scholar 

  26. Wang, J., Wan, W.: Factors influencing fermentative hydrogen production: a review. Int. J. Hydrogen Energy 34, 799–811 (2009)

    Article  Google Scholar 

  27. Kapdan, I.K., Kargi, F.: Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38, 569–582 (2006)

    Article  Google Scholar 

  28. Das, D., Veziroglu, T.N.: Advances in biological hydrogen production processes. Int. J. Hydrogen Energy 33, 6046–6057 (2008)

    Article  Google Scholar 

  29. Ren, N., Wang, B., Huang, J.-C.: Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotechnol. Bioeng. 54, 428–433 (1997)

    Article  Google Scholar 

  30. Chen, C.C., Lin, C.Y., Lin, M.C.: Acid-base enrichment enhances anaerobic hydrogen production process. Appl. Microbiol. Biotechnol. 58, 224–228 (2002)

    Article  Google Scholar 

  31. Luo, G., Xie, L., Zou, Z., Zhou, Q., Wang, J.-Y.: Fermentative hydrogen production from cassava stillage by mixed anaerobic microflora: effects of temperature and pH. Appl. Energy 87, 3710–3717 (2010)

    Article  Google Scholar 

  32. Wu, X., Yao, W., Zhu, J.: Effect of pH on continuous biohydrogen production from liquid swine manure with glucose supplement using an anaerobic sequencing batch reactor. Int. J. Hydrogen Energy 35, 6592–6599 (2010)

    Article  Google Scholar 

  33. Ferchichi, M., Crabbe, E., Gil, G.-H., Hintz, W., Almadidy, A.: Influence of initial pH on hydrogen production from cheese whey. J. Biotechnol. 120, 402–409 (2005)

    Article  Google Scholar 

  34. Fang, H.H.P., Liu, H.: Effect of pH on hydrogen production from glucose by a mixed culture. Bioresour. Technol. 82, 87–93 (2002)

    Article  Google Scholar 

  35. Khanal, S.K., Chen, W.H., Li, L., Sung, S.: Biological hydrogen production: effects of pH and intermediate products. Int. J. Hydrogen Energy 29, 1123–1131 (2004)

    Google Scholar 

  36. APHA, AWWA, WEF: Standard Methods for the Examination of Water and Wastewater, 19th edn. American Public Health Association, Washington, DC (1995)

    Google Scholar 

  37. Joseffson, B.: Rapid spectrophotometric determination of total carbohydrates. In: Grasshoff, K., Ehrhardt, M., Kremling, K. (eds.) Methods of Seawater Analysis, pp. 340–342. Verlag Chemie GmbH, Weinheim (1983)

  38. Mohd Yasin, N.H., Rahman, N.A., Man, H.C., Mohd Yusoff, M.Z., Hassan, M.A.: Microbial characterization of hydrogen-producing bacteria in fermented food waste at different pH values. Int. J. Hydrogen Energy 36, 9571–9580 (2011)

    Article  Google Scholar 

  39. Van Ginkel, S., Sung, S., Lay, J.-J.: Biohydrogen production as a function of pH and substrate concentration. Environ. Sci. Technol. 35, 4726–4730 (2001)

    Article  Google Scholar 

  40. Davila-Vazquez, G., Alatriste-Mondragón, F., de León-Rodríguez, A., Razo-Flores, E.: Fermentative hydrogen production in batch experiments using lactose, cheese whey and glucose: influence of initial substrate concentration and pH. Int. J. Hydrogen Energy 33, 4989–4997 (2008)

    Article  Google Scholar 

  41. Azbar, N., Çetinkaya Dokgöz, F.T., Keskin, T., Korkmaz, K.S., Syed, H.M.: Continuous fermentative hydrogen production from cheese whey wastewater under thermophilic anaerobic conditions. Int. J. Hydrogen Energy 34, 7441–7447 (2009)

    Article  Google Scholar 

  42. Yang, P., Zhang, R., McGarvey, J.A., Benemann, J.R.: Biohydrogen production from cheese processing wastewater by anaerobic fermentation using mixed microbial communities. Int. J. Hydrogen Energy 32, 4761–4771 (2007)

    Article  Google Scholar 

  43. Venetsaneas, N., Antonopoulou, G., Stamatelatou, K., Kornaros, M., Lyberatos, G.: Using cheese whey for hydrogen and methane generation in a two-stage continuous process with alternative pH controlling approaches. Bioresour. Technol. 100, 3713–3717 (2009)

    Article  Google Scholar 

  44. Teli, A., Ficara, E., Malpei, F.: Bio-hydrogen production from cheese whey by dark fermentation. Chem. Eng. Trans. 37, 613–618 (2014)

    Google Scholar 

  45. Lateef, S.A., Beneragama, N., Yamashiro, T., Iwasaki, M., Ying, C., Umetsu, K.: Biohydrogen production from co-digestion of cow manure and waste milk under thermophilic temperature. Bioresour. Technol. 110, 251–257 (2012)

    Article  Google Scholar 

  46. Thauer, R.K., Jungermann, K., Decker, K.: Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41, 100–180 (1977)

    Google Scholar 

  47. Kim, S.H., Shin, H.S.: Effects of base-pretreatment on continuous enriched culture for hydrogen production from food waste. Int. J. Hydrogen Energy 33, 5266–5274 (2008)

    Article  Google Scholar 

  48. Noike, T., Takabatake, H., Mizuno, O., Ohba, M.: Inhibition of hydrogen fermentation of organic wastes by lactic acid bacteria. Int. J. Hydrogen Energy 27, 1367–1371 (2002)

    Article  Google Scholar 

  49. Wang, G., Mu, Y., Yu, H.Q.: Response surface analysis to evaluate the influence of pH, temperature and substrate concentration on the acidogenesis of sucrose-rich wastewater. Biochem. Eng. J. 23, 175–184 (2005)

    Article  Google Scholar 

  50. Ding, J., Liu, B.F., Ren, N.Q., Xing, D.F., Guo, W.Q., Xu, G.F., Xie, G.J.: Hydrogen production from glucose by co-culture of Clostridium butyricum and immobilized Rhodopseudomonas faecalis RLD-53. Int. J. Hydrogen Energy 34, 3647–3652 (2009)

    Article  Google Scholar 

  51. Zhang, Y.-J., Jiang, J.-G., Wang, J.-M.: Effect of pH value on VFA concentration and composition during anaerobic fermentation of kitchen waste. China Environ. Sci. 33, 680–684 (2013)

    Google Scholar 

  52. Zheng, M., Zheng, M., Wu, Y., Ma, Y., Wang, K.: Effect of pH on types of acidogenic fermentation of fruit and vegetable wastes. Biotechnol. Bioprocess E 20, 298–303 (2015)

    Article  Google Scholar 

  53. Stiles, M.E., Holzapfel, W.H.: Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36, 1–29 (1997)

    Article  Google Scholar 

  54. Parawira, W., Murto, M., Read, J.S., Mattiasson, B.: Volatile fatty acid production during anaerobic mesophilic digestion of solid potato waste. J. Chem. Technol. Biotechnol. 79, 673–677 (2004)

    Article  Google Scholar 

  55. Akao, S., Tsuno, H., Horie, T., Mori, S.: Effects of pH and temperature on products and bacterial community in l-lactate batch fermentation of garbage under unsterile condition. Water Res. 41, 2636–2642 (2007)

    Article  Google Scholar 

  56. Castelló, E., García y Santos, C., Iglesias, T., Paolino, G., Wenzel, J., Borzacconi, L., Etchebehere, C.: Feasibility of biohydrogen production from cheese whey using a UASB reactor: links between microbial community and reactor performance. Int. J. Hydrogen Energy 34, 5674–5682 (2009)

    Article  Google Scholar 

  57. Antonopoulou, G., Gavala, H.N., Skiadas, I.V., Angelopoulos, K., Lyberatos, G.: Biofuels generation from sweet sorghum: fermentative hydrogen production and anaerobic digestion of the remaining biomass. Bioresour. Technol. 99, 110–119 (2008)

    Article  Google Scholar 

  58. Wang, X., Zhao, Y.-C.: A bench scale study of fermentative hydrogen and methane production from food waste in integrated two-stage process. Int. J. Hydrogen Energy 34, 245–254 (2009)

    Article  Google Scholar 

  59. Infantes, D., González del Campo, A., Villaseñor, J., Fernández, F.J.: Influence of pH, temperature and volatile fatty acids on hydrogen production by acidogenic fermentation. Int. J. Hydrogen Energy 36, 15595–15601 (2011)

    Article  Google Scholar 

  60. Zoetemeyer, R.J., van den Heuvel, J.C., Cohen, A.: pH influence on acidogenic dissimilation of glucose in an anaerobic digestor. Water Res. 16, 303–311 (1982)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from the European Commission Project LIFE10 ENV/CY/000721 (DAIRIUS) “Sustainable management via energy exploitation of end-of-life dairy products in Cyprus” is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Kornaros.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stavropoulos, K.P., Kopsahelis, A., Zafiri, C. et al. Effect of pH on Continuous Biohydrogen Production from End-of-Life Dairy Products (EoL-DPs) via Dark Fermentation. Waste Biomass Valor 7, 753–764 (2016). https://doi.org/10.1007/s12649-016-9548-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9548-7

Keywords

Navigation