Skip to main content
Log in

Comparing Bioalcohols Production from Olive Pruning Biomass by Biotechnological Pathway with Candida guilliermondii and Pichia stipitis

  • Short Communication
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

After acid hydrolysis with \(\hbox {H}_2\hbox {SO}_4\) from olive pruning, subsequent fermentations were carried out in order to compare two non-traditional yeasts: Candida guilliermondii and Pichia stipitis. During the fermentations, sugar uptake as well as ethanol and xylitol production were determined. However, both yeast employed for the biotransformations showed different behaviours; C. guilliermondii produced ethanol from D-glucose and xylitol from D-xylose but, in contrast, P. stipitis only was able to produce ethanol from hexoses and pentoses although, due to the inhibitors amount (acetic acid and polyphenols mainly), it required a detoxification step. To solve this problem, activated charcoal treatment as well as a vacuum evaporation process (concentration ratio 2.7) were performed as physical detoxification methods with positive results. The maximum ethanol and xylitol yields (\(Y_{P/S}\)) (calculated on consumed sugars) obtained with C. guilliermondii were 0.38 and 0.31 kg \(\hbox {kg}^{-1}\) respectively; while P. stipitis was able to produce 0.33 kg of ethanol per kg of fermentable sugar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Palmqvist, E., Hahn-Hägerdal, B.: Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresour. Technol. 74(1), 25–33 (2000). doi:10.1016/s0960-8524(99)00161-3

    Article  Google Scholar 

  2. Jensen, J.R., Morinelly, J.E., Gossen, K.R., Brodeur-Campbell, M.J., Shonnard, D.R.: Effects of dilute acid pretreatment conditions on enzymatic hydrolysis monomer and oligomer sugar yields for aspen, balsam and switchgrass. Bioresour. Technol. 101(7), 2317–2325 (2010). doi:10.1016/j.biortech.2009.11.038

    Article  Google Scholar 

  3. Mussatto, S.I., Santos, J.C., Roberto, I.C.: Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. J. Chem. Technol. Biotechnol. 79(6), 590–596 (2004). doi:10.1002/jctb.1026

    Article  Google Scholar 

  4. Franden, M.A., Pilath, H.M., Mohagheghi, A., Pienkos, P.T., Zhang, M.: Inhibition of growth of Zymomonas mobilis by model compounds found in lignocellulosic hydrolysates. Biotechnol. Biofuels. 6, 1–15 (2013). doi:10.1186/1754-6834-6-99

    Article  Google Scholar 

  5. Bellido, C., Bolado, S., Coca, M., Lucas, S., González-Benito, G., García-Cubero, M.T.: Effect of inhibitors formed during wheat straw pretreatment on ethanol fermentation by Pichia stipitis. Bioresour. Technol. 102(23), 10868–10874 (2011). doi:10.1016/j.biortech.2011.08.128

    Article  Google Scholar 

  6. Martín, C., Jönsson, L.J.: Comparison of the resistance of industrial and laboratory strains of Saccharomyces and Zygosaccharomyces to lignocellulose-derived fermentation inhibitors. Enzyme Microb. Tech. 32, 386–395 (2003). doi:10.1016/s0141-0229(02)00310-1

    Article  Google Scholar 

  7. Xie, R., Tu, M., Carvin, J., Wu, Y.: Detoxification of biomass hydrolysates with nucleophilic amino acids enhances alcoholic fermentation. Bioresour. Technol. 186, 106–113 (2015). doi:10.1016/j.biortech.2015.03.030

    Article  Google Scholar 

  8. Browning, B.L.: Determination of lignin. In: Wiley, John, Sons, (eds.) Methods of Wood Chemistry, pp. 785–823. Interscience Publishers, New York (1967)

    Google Scholar 

  9. Mateo, S., Roberto, I.C., Sánchez, S., Moya, A.J.: Detoxification of hemicellulosic hydrolyzate from olive tree pruning residue. Ind. Crops Prod. 49, 196–203 (2013). doi:10.1016/j.indcrop.2013.04.046

    Article  Google Scholar 

  10. Sluiter, A., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D.: Determination of extractives in biomass. NREL/TP-510-42619. National Renewable Energy Laboratory (NREL). http://www.nrel.gov/docs/gen/fy08/42619 (2008)

  11. Liu, K.: Chemical composition of distillers grains, a review. J. Agric. Food Chem. 59, 1508–1526 (2011). doi:10.1021/jf103512z

    Article  Google Scholar 

  12. Puentes, J.G., Mateo, S., Fonseca, B.G., Roberto, I.C., Sánchez, S., Moya, A.J.: Monomeric carbohydrates production from olive tree pruning biomass: modeling of dilute acid hydrolysis. Bioresour. Technol. 149, 149–154 (2013). doi:10.1016/j.biortech.2013.09.046

    Article  Google Scholar 

  13. Fonseca, D.A., Lupitskyy, R., Timmons, D., Gupta, M., Satyavolu, J.: Towards integrated biorefinery from dried distillers grains: selective extraction of pentoses using dilute acid hydrolysis. Biomass Bioenergy. 71, 178–186 (2014). doi:10.1016/j.biombioe.2014.10.008

    Article  Google Scholar 

  14. Lindegren, C.C., Nagai, S., Nagai, H.: Induction of respiratory deficiency in yeast by manganese, copper, cobalt and nickel. Nature 182, 446–448 (1958). doi:10.1038/182446a0

    Article  Google Scholar 

  15. Gimenes, M.A.P., Carlos, L.C.S., Faria, L.F.F., Pereira, N.: Oxygen uptake rate in production of xylitol by Candida guilliermondii with different aeration rates and initial xylose concentrations. Appl. Biochem. Biotech. 98–100, 1049–1060 (1958). doi:10.1385/abab:98-100:1-9:1049

    Google Scholar 

  16. Singleton, V.L., Orthofer, R., Lamuela-Raventós, R.M.: Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin–Ciocalteu reagent. Method Enzymol. 299, 152–178 (1999). doi:10.1016/s0076-6879(99)99017-1

    Article  Google Scholar 

  17. Martínez, A., Rodríguez, M.E., York, S.W., Preston, J.F., Ingram, L.O.: Use of UV Absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol. Prog. 16, 637–641 (2000). doi:10.1021/bp0000508

    Article  Google Scholar 

  18. Mateo, S., Puentes, J.G., Roberto, I.C., Sánchez, S., Moya, A.J.: Optimization of acid hydrolysis of olive tree pruning residue. Fermentation with Candida guilliermondii. Biomass Bioenergy 69, 39–46 (2014). doi:10.1016/j.biombioe.2014.07.007

    Article  Google Scholar 

  19. Canilha, L., Chandel, A.C., dos Santos Milessi, T.S., Antunes, F.A.F., da Costa Freitas, W.L., Felipe, M.G.A., da Silva, S.S.: Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic saccharification and ethanol fermentation. J. Biomed. Biotechnol. 2012, 1–15 (2012). doi:10.1155/2012/989572

    Article  Google Scholar 

  20. Wyman, C.: Handbook on bioethanol: production and utilization. In: Wayman, C. (ed.) Applied Energy Technology Series. CRC Press, Washington DC (1996)

    Google Scholar 

  21. Manzanares, P., Negro, M.J., Oliva, J.M., Saéz, F., Ballesteros, I., Ballesteros, M., Cara, C., Castro, E., Ruiz, R.: Different process configurations for bioethanol production from pretreated olive pruning biomass. J. Chem. Technol. Biotechnol. 86, 881–887 (2011). doi:10.1002/jctb.2604

    Article  Google Scholar 

  22. García, J.F., Sánchez, S., Bravo, V., Cuevas, M., Rigal, L., Gaset, A.: Xylitol production from olive-pruning debris by sulphuric acid hydrolysis and fermentation with Candida tropicalis. Holzforschung. 65, 59–65 (2011). doi:10.1515/hf.2010.113

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support of “Consejería de Economía, Innovación y Ciencia” from Andalusia Regional Government (Project AGR-6509) (Spain) and the Programa Ciência sem Fronteiras do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (Brazil).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alberto J. Moya.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moya, A.J., Mateo, S., Puentes, J.G. et al. Comparing Bioalcohols Production from Olive Pruning Biomass by Biotechnological Pathway with Candida guilliermondii and Pichia stipitis . Waste Biomass Valor 7, 1369–1375 (2016). https://doi.org/10.1007/s12649-016-9531-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9531-3

Keywords

Navigation