Skip to main content
Log in

Integral Valorization of the Water Hyacinth from the Canals of Xochimilco: Production of Edible Mushrooms and Forage

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

This work assesses the feasibility of the valorization of water hyacinth, which grows in the canals of Xochimilco, México, through its use as substrate for the cultivation of edible mushrooms and forage.

Methods

Water hyacinth was processed using different pretreatments, producing four different substrates in which the mushroom was cultivated. The degradation of the substrate was estimated by its weight reduction, the biomass generation was measured, and the biological efficiency was calculated. The possible presence of cadmium and lead was determined by atomic absorption spectrophotometry in the fruiting bodies and in substrates (before and after the cultivation of the mushrooms). The potential of the substrate to be used as forage was determined through a proximate analysis.

Results

From all the inoculated substrates, the mushroom fructified only in two (humid and sterilized water hyacinth; and humid, pre-composted, and pasteurized water hyacinth with roots). Humid and sterilized water hyacinth was the best treatment, with a biological efficiency of 310.44 % ± 85.27. The weight reduction of this treatment was similar to that of the straw, which was used as a control. For both treatments, there was no presence of Pb and Cd in the fruiting body or in the spent substrate. The results of the proximal analysis showed that the spent substrate has the required characteristics to be used as potential bovine forage.

Conclusions

This treatment is a feasible alternative for the management of this complex waste, producing a valuable protein source and feed for cattle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Lowe, S., Browne, M., Boudjelas, S., De Poorter, M.: 100 of the World’s Worst Invasive Alien Species: A Selection from the Global Invasive Species Database. Invasive Species Specialist Group (ISSG), New Zeland (2000)

    Google Scholar 

  2. Wilson, J.R., Rees, M., Holst, N., Thomas, M.B., Hill, G.: Water hyacinth population dynamics. In: Julien, M.H., Hill, M.P., Center, T.D., Jianqing, D. (eds.) Biological and Integrated Control of Water Hyacinth, Eichhornia crassipes, pp. 96–104. ACIAR, Bruce (2001)

    Google Scholar 

  3. Center, T.D., Hill, M.P., Cordo, H., Julien, M.H.: Water hyacinth. In: Van Driesche, R., Lyon, S., Blossey, B., Hoddle, M., Reardon, R. (eds.) Biological Control of Invasive Plants in the Eastern United States, pp. 41–64. USDA Forest Service, Washington (2002)

    Google Scholar 

  4. Carrión, C., León, C.P., Cram, S., Sommer, I., Hernández, M., Vanegas, C.: Potential use of water hyacinth (Eichhornia crassipes) in Xochimilco for metal phytoremediation. Agrociencia 46, 609–620 (2012)

    Google Scholar 

  5. Bicudo, D.D.C., Fonseca, B.M., Bini, L.M., Crossetti, L.O., Bicudo, C.E.D.M., Araújo-Jesus, T.: Undesirable side-effects of water hyacinth control in a shallow tropical reservoir. Freshw. Biol. 52, 1120–1133 (2007)

    Article  Google Scholar 

  6. Gajalakshmi, S.: High-rate composting–vermicomposting of water hyacinth (Eichhornia crassipes, Mart. Solms). Bioresour. Technol. 83, 235–239 (2002)

    Article  Google Scholar 

  7. Gunnarsson, C.C., Petersen, C.M.: Water hyacinths as a resource in agriculture and energy production: a literature review. Waste Manag. 27, 117–129 (2007)

    Article  Google Scholar 

  8. Dorahy, C., Pirie, D., McMaster, I., Muirhead, L., Pengelly, P., Chan, K., Jackson, M., Barchia, I.M.: Environmental risk assessment of compost prepared from salvinia, egeria densa, and alligator weed. J. Environ. Qual. 38, 1483–1492 (2004)

    Article  Google Scholar 

  9. Abdel, M.: Water hyacinth: available and renewable resource. Electron. J. Environ. Agric. Food Chem. 9, 1746–1759 (2010)

    Google Scholar 

  10. Asamblea Legislativa del Distrito Federal: Urge solución a procesamiento de residuos orgánicos. http://www.aldf.gob.mx/imprimir-9980 (2012). Accessed 26 May 2014

  11. El-haggar, S.M., Ghribi, M., Longo, G.: Agricultural waste as an energy source in developing countries: a case study in Egypt on the utilization of agricultural waste (2001)

  12. Lindsey, K., Hirt, H.M. (eds.): Utilization: General principles. In: Use Water Hyacinth: A Practical Handbook of Uses for Water Hyacinth from Across the World, pp. 21–38. Anamed (2000)

  13. Mukherjee, R., Ghosh, M.: Improvement of dry matter digestibility of water hyacinth by solid state fermentation using white rot fungi. Indian J. Exp. Biol. 42, 837–843 (2004)

    Google Scholar 

  14. Issaka, J.: Growth and bioconversion ability of oyster mushroom (Pleurotus ostreatus) on different agro-wastes (2011)

  15. Rinker, D.L., Zeri, Woo Kang, S.: Recycling of spent oyster mushroom substrate. In: MushWorld (ed.) Mushroom Grower’s Handbook 1, pp. 192–196. MushWorld, Korea (2004)

  16. Rodrigues da Luz, M.J., Albino Paes, S., Pereira Torres, D., Dias Nunes, M., Soares de Silva, J., Cuquetto Mantovani, H., Megumi Kasuya, M.C.: Production of edible mushroom and degradation of antinutritional factors in jatropha biodiesel residues. LWT Food Sci. Technol. 50, 575–580 (2013)

    Article  Google Scholar 

  17. Pauli, G.: The Blue Economy. Paradigm Pubs, USA (2010)

    Google Scholar 

  18. Sánchez, C.: Cultivation of Pleurotus ostreatus and other edible mushrooms. Appl. Microbiol. Biotechnol. 85, 1321–1337 (2010)

    Article  Google Scholar 

  19. Adebayo, E., Martínez-Carrera, D.: Oyster mushrooms (Pleurotus) are useful for utilizing lignocellulosic biomass. Afr. J. Biotechnol. 14, 52–67 (2015)

    Article  Google Scholar 

  20. Martínez-Nieto, P., García-Gómez, G., Mora-Ortiz, L., Robles-Camargo, G.: Polluting macrophytes Colombian lake Fúquene used as substrate by edible fungus Pleurotus ostreatus. World J. Microbiol. Biotechnol. 30, 225–236 (2014)

    Article  Google Scholar 

  21. Sánchez, J., Martínez, D., Mata, G., Leal, H.: El cultivo de setas Pleurotus spp en México. ECOSUR, Chiapas, Mexico (2007)

    Google Scholar 

  22. Martínez-Carrera, D., Morales, P., Sobal, M., Bonilla, M., Martínez, W., Mayett, Y.: Los hongos comestibles, funcionales y medicinales. In: Memorias Reunión General de la Academia Mexicana de Ciencias: Ciencia y Humanismo (Agrociencias). pp. 1–18. Academia Mexicana de Ciencias, Mexico City (2012)

  23. Granados, E.O.: Producción Artesanal de Hongos. PADERUCHI, Guatemala (2008)

    Google Scholar 

  24. Mukherjee, R., Nandi, B.: Improvement of in vitro digestibility through biological treatment of water hyacinth biomass by two Pleurotus species. Int. Biodeterior. Biodegrad. 53, 7–12 (2004)

    Article  Google Scholar 

  25. Mexico. NMX-AA-016-1984—Environmental protection-soil pollution—municipal solid residues—humidity determination. Secretaría de Comercio y Fomento Industrial, Mexico City (1984)

  26. Mexico. NMX-AA-018-1984—Environmental protection-soil pollution—municipal solid residues—ash determination. Secretaría de Comercio y Fomento Industrial, Mexico City (1984)

  27. Fernández, L.C., Rojas, N.G. Roldán Carrillo, T.G., Ramírez, M.E., Zegarra, H.G., Uribe, R., Reyes, R.J., Hernández, D., Arce, J.M.: Manual de técnicas de análisis aplicadas a la remediación de sitios contaminados. IMP, SEMARNAT, INE, Mexico City (2006)

  28. Espinosa, R.: Manual de prácticas de Taller IV. Análisis Fisicoquímicos de Residuos Sólidos Municipales. Universidad Autónoma Metropolitana Unidad Azcapotzalco, Mexico City (2010)

    Google Scholar 

  29. Mexico. NMX-AA-067-1985—Environmental protection-soil pollution—municipal solid residues—determination of the carbon/nitrogen relation. Secretaría de Comercio y Fomento Industrial, Mexico City (1985)

  30. Mexico. NMX-AA-025-1984—Environmental protection-soil pollution—solid residues—pH determination—potentiometric method. Secretaría de Comercio y Fomento Industrial, Mexico City (1984)

  31. Espinosa-Valdemar, R.M., Turpin-Marion, S., Delfín-Alcalá, I., Vázquez-Morillas, A.: Disposable diapers biodegradation by the fungus Pleurotus ostreatus. Waste Manag. 31, 1683–1688 (2011)

    Article  Google Scholar 

  32. Mexico. NOM-117-SSA1-1994—Goods and services. Testing technique for the determination of cadmium, arsenic, lead, tin, copper, iron, zinc and mercury, by atomic absorption spectrometry in foods and potable and purified water. Secretaría de Salud, Mexico City (1994)

  33. Mexico. NMX-Y-093-SCFI-2003—Animal feed—determination of the ash content in finished animal feed products and ingredients. Test method. Secretaría de Comercio y Fomento Industrial, Mexico City (2003)

  34. Mexico. NMX-Y-098-SCFI-2001—Animal feed—Determination of the moisture content in finished animal feed products and ingredients. Test method. Secretaría de Comercio y Fomento Industrial, Mexico City (2001)

  35. Mexico. NMX-Y-347-SCFI-2007—Animal feed—determination of the lipid content by acid hydrolysis in finished animal feed products and ingredients. Test method. Secretaría de Comercio y Fomento Industrial, Mexico City (2007)

  36. Mexico. NMX-Y-118-SCFI-2001—Balanced animal feed and ingredients—determination of the crude protein content. Test method. Secretaría de Comercio y Fomento Industrial, Mexico City (2001)

  37. AOAC. AOAC 962.09-1971(2010)—Fiber (crude) in animal feed and pet food. Ceramic fiber filter method. Association of Official Analytical Chemists, Gaithersburg MD (2010)

  38. AOAC: Official Method of Analysis. Association of Official Analytical Chemists, Washington, DC (1990)

    Google Scholar 

  39. Sánchez, J., Royse, D.: La biología y el cultivo de Pleurotus spp. Limusa, Mexico City (2001)

    Google Scholar 

  40. Woo, S.L., Di Benedetto, P., Senatore, M., Abadi, K., Gigante, S., Soriente, I., Ferraioli, S., Scala, F., Lorito, M.: identification and characterization of trichoderma species aggressive to Pleurotus in Italy. J. Zhejiang Univ. Agric. Life Sci. 30, 469–470 (2004)

    Google Scholar 

  41. Lagos, C.C.: Esterilización vs. Pasteurización de Sustratos de Cultivo, MICOTEC (2004)

    Google Scholar 

  42. Kivaisi, A., Magingo, F., Mamiro, B.: Performance of Pleurotus flabellatus on water hyacinth (Eicchornia crssipes) shoots at two different temperature and relative humidity regimes. Tanz. J. Sci. 29, 11–18 (2003)

    Google Scholar 

  43. Chen, X., Jiang, Z., Chen, X., Lei, J., Weng, B., Huang, Q.: Use of biogas fluid-soaked water hyacinth for cultivating Pleurotus geesteranus. Bioresour. Technol. 101, 2397–2400 (2010)

    Article  Google Scholar 

  44. Union, E.: Directive 2002/32/EC of the European Parliament and of the Council of 7 May 2002 on undesirable substances in animal feed. European Parliament, European Union (2002)

    Google Scholar 

  45. Kabata-Pendias, A.: Trace elements in soils and plant. CRC Press, Boca Raton (2011)

    Google Scholar 

  46. Demirbas, A.: Accumulation of heavy metals in some edible mushrooms from Turkey. Food Chem. 68, 415–419 (2000)

    Article  Google Scholar 

  47. Kalac, P., Svoboda, L.: A review of trace element concentrations in edible mushrooms. Food Chem. 69, 273–281 (2000)

    Article  Google Scholar 

  48. Gast, C.H., Jansen, E., Bierling, J., Haanstra, L.: Heavy metals in mushrooms and their relationship with soil characteristics. Chemosphere 17, 789–799 (1988)

    Article  Google Scholar 

  49. Quarcoo, A., Adotey, G.: Determination of heavy metals in Pleurotus ostreatus (Oyster mushroom) and Termitomyces clypeatus (Termite mushroom) sold on selected markets in Accra. Ghana. Mycosphere. 4, 960–967 (2013)

    Google Scholar 

  50. Naresh, M., Udaya, E., Byragi, T.: Assessment of heavy metal threat in agaricus bisporus mushrooms cultivated from water hyacinth weed of Kolleru lake, Andhra pradesh-India. Int. J. Environ. Sci. 3, 28–35 (2012)

    Google Scholar 

  51. Pandiarajan, G., Govindaraj, R., Mareeswaran, J.: Makesh Kumar, B.: Antibacterial activity and heavy metal accumulation of edible oyster mushroom (Pleurotus sajor-saju) grown on two substrates. Int. J. Pharm. Pharm. Sci. 4, 4–6 (2012)

    Google Scholar 

  52. Palomo-Martínez, G.G., Arriaga-Becerra, R.: Atlas de ubicación de productos agropecuarios utilizables en la planificación y desarrollo de la acuicultura en México. Secretaría de Pesca Mexico City (Mexico). Dirección General de Acuacultura; FAO, Rome (Italy). Fisheries Dept., Mexico (1993)

  53. Naseri, A.: Animal nutrition training manual. ATNESA, Afghanistan (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jéssica P. Hermoso-López Araiza.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hermoso-López Araiza, J.P., Quecholac-Piña, X., Beltrán-Villavicencio, M. et al. Integral Valorization of the Water Hyacinth from the Canals of Xochimilco: Production of Edible Mushrooms and Forage. Waste Biomass Valor 7, 1203–1210 (2016). https://doi.org/10.1007/s12649-016-9526-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9526-0

Keywords