Advertisement

Waste and Biomass Valorization

, Volume 7, Issue 4, pp 899–912 | Cite as

Management and Valorisation of Wastes and Co-products from the TiO2 Pigment Industry

  • M. ContrerasEmail author
  • M. J. Gázquez
  • S. M. Pérez-Moreno
  • M. Romero
  • J. P. Bolívar
Original Paper

Abstract

This work analyses and evaluates potential applications for several inorganic wastes and intermediate materials, called co-products, generated in the TiO2 pigment production industry through the sulphate method. For this purpose, a physical–chemical characterisation of the input materials (ilmenite and slag), wastes (sludge and red gypsum), and co-products (two ferrous sulphates, mono and hepta-hydrated) was carried out. In addition, because the TiO2 pigment production activity is a Naturally Occurring Radioactive Material industry, a radiological characterisation was also undertaken. The main objective was to gain basic information for the application (actual or potential) of these co-products and wastes in fields such as agriculture, construction, and civil engineering. For each specific application of these wastes and co-products, additional studies were carried out to evaluate their appropriateness with respect to technical properties and their health and environmental impact. The results obtained in this work have revealed several lines of research with potential commercial applications.

Keywords

TiO2 industry NORM wastes Management Valorisation Civil engineering 

Notes

Acknowledgments

This work has been partially supported by the Government of Andalusia through the project “Characterization and modelling of the phosphogypsum stacks from Huelva for their environmental management and control” (Ref.: P10-RNM-6300). PhD student M. Contreras would like to expresses his gratitude for the research contract granted him through The Fellowship Training Program of the University Teaching Staff; reference AP2010-2746, financed by the Spanish Ministry of Education, Culture and Sport (MECD). This is publication No. 119 from the CEIMAR Publication Series.

References

  1. 1.
    Kacimi, L., Simon-Masseron, A., Ghomari, A., Derriche, Z.: Reduction of linkerization temperature by using phosphogypsum. J. Hazard. Mater. B137, 129–137 (2006)CrossRefGoogle Scholar
  2. 2.
    Kuryatnyk, T., da Luz, C.A., Ambroise, J., Pera, J.: Valorization of phosphogypsum as hydraulic binder. J. Hazard. Mater. 160, 681–687 (2008)CrossRefGoogle Scholar
  3. 3.
    De Michelis, I., Ferella, F., Beolchini, F., Olivieri, A., Veglió, F.: Characterisation and classification of solid wastes coming from reductive acid leaching of low grade manganiferous ore. J. Hazard. Mater. (2008). doi: 10.1016/j.jhazmat.2008.06.024 Google Scholar
  4. 4.
    Liu, T., Lin, C., Wu, Y.: Characterization of red mud derived of from a combined Bayer process and bauxite calcination method. J. Hazard. Mater. 146, 255–261 (2007)CrossRefGoogle Scholar
  5. 5.
    Deydier, E., Guilet, R., Sarda, S., Sharrock, P.: Physical and chemical characterization of crude meat and bone meal combustion residue: “waste or raw material?”. J. Hazard. Mater. B121, 141–148 (2005)CrossRefGoogle Scholar
  6. 6.
    Shen, W., Zhou, M., Ma, W., Hu, J., Cai, Z.: Investigation on the application of steel slag–fly ash–phosphogypsum solidified material as road base material. J. Hazard. Mater. (2007). doi: 10.1016/j.jhazmat.2008.07.125 Google Scholar
  7. 7.
    Potgieter, J.H., Horne, K.A., Potgieter, S.S., Wirth, W.: An evaluation of the incorporation of a titanium dioxide producer’s waste material in Portland cement clinker. Mater. Lett. 57, 157–163 (2002)CrossRefGoogle Scholar
  8. 8.
    McNulty, G.S.: Production of titanium dioxide. In: Plenary lecture. NORM V International Conference Sevilla Spain, 19–22 Mar 2007. ISBN 978-92-0-101508-2Google Scholar
  9. 9.
    Gázquez, M.J., Bolívar, J.P., Garcia-Tenorio, R., Vaca, F.: Physicochemical characterization of raw materials and co-products from the titanium dioxide industry. J. Hazard. Mater. 166(2), 1429–1440 (2009)CrossRefGoogle Scholar
  10. 10.
    Lozano, R.L., Bolívar, J.P., San Miguel, E.G., García-Tenorio, R., Gázquez, M.J.: An accurate method to measure alpha-emitting natural radionuclides in atmospheric filters: application in two NORM industries. Nucl. Instrum. Methods A 659, 557–568 (2011)CrossRefGoogle Scholar
  11. 11.
    Hurtado, S., García-Tenorio, R., García-León, M.: 210Pb determination in lead shields for low-level gamma-spectrometry applying two independent radiometric techniques. Nucl. Instrum. Methods Sect. A 497, 381–388 (2003)CrossRefGoogle Scholar
  12. 12.
    AENOR (Asociación Española de Normalización y Certificación-Spanish Association for Standardisation and Certification). UNE-EN 196-1: Métodos de ensayo de cementos. Parte 1: Determinación de resistencias mecánicas (Methods of testing cement—Part 1: Determination of strength). (2005)Google Scholar
  13. 13.
    AENOR (Asociación Española de Normalización y Certificación-Spanish Association for Standardisation and Certification). UNE-EN 480-5: Aditivos para hormigones, morteros y pastas. Métodos de ensayo. Parte 5: Determinación de la absorción capilar (Admixtures for Concrete, Mortar and Grout. Test Methods. Part 5: Determination of Capillary Absorption). (2006)Google Scholar
  14. 14.
    AENOR (Asociación Española de Normalización y Certificación-Spanish Association for Standardisation and Certification). UNE-EN 196-3: Métodos de ensayo de cementos. Parte 3: Determinación del tiempo de fraguado y de la estabilidad de volumen (Methods of testing cement—Part 3: Determination of setting times and soundness). (2005)Google Scholar
  15. 15.
    ISO (International Organization for Standardization). 10545-3: Ceramic tiles. Part 3: Determination of water absorption, apparent porosity, apparent relative density and bulk density. (1997)Google Scholar
  16. 16.
    ASTM (American Society for Testing and Materials) C373-88. Standard test method for water adsorption, bulk density, apparent porosity and apparent specific gravity of fired white ware products. (1999)Google Scholar
  17. 17.
    AENOR (Asociación Española de Normalización y Certificación-Spanish Association for Standardisation and Certification). EN 843-1: Cerámicas técnicas avanzadas. Cerámicas monolíticas. Propiedades mecánicas a temperatura ambiente. Parte 1: Determinación de la resistencia a la flexión (Ratificada por AENOR en enero de 2007.) (Advanced technical ceramics. Monolithic ceramics. Mechanical properties at room temperature. Part. I: Determination of flexural strength). (2006)Google Scholar
  18. 18.
    AENOR (Asociación Española de Normalización y Certificación-Spanish Association for Standardisation and Certification). UNE-EN 13501-1: Clasificación en función del comportamiento frente al fuego de los productos de construcción y elementos para la edificación. Parte 1: Clasificación a partir de datos obtenidos en ensayos de reacción al fuego (Fire classification of construction products and building elements—Part 1: Classification using data from reaction to fire tests). (2010)Google Scholar
  19. 19.
    Sahoo, P.K., Galgali, R.K., Singh, S.K., Bhattacharyee, S., Mishra, P.K., Mahanty, B.C.: Preparation of titania-rich slag by plasma smelting of ilmenite. Scand. J. Metal. 28(6), 243–248 (1999)Google Scholar
  20. 20.
    Pourabdoli, M., Raygan, S., Abdizadeh, H., Hanaei, K.: Production of high titania slag by electro-slag crucible melting (ECSM) process. Int. J. Miner. Process. 78(3), 175–181 (2006)CrossRefGoogle Scholar
  21. 21.
    Pérez-Moreno, S.M., Gázquez, M.J., Barneto, A.G., Bolívar, J.P.: Thermal characterization of new fire-insulating materials from industrial inorganic TiO2 wastes. Thermochim. Acta 552, 114–122 (2013)CrossRefGoogle Scholar
  22. 22.
    Wang, T., Debelak, K.A., Roth, J.A.: Dehydration of iron (II) sulphate heptahydrate. Thermochim. Acta 462(1), 89–93 (2007)CrossRefGoogle Scholar
  23. 23.
    Pownceby, I.M., Sparrow, J.G., Fisher-White, J.M.: Mineralogical characterization of eucla basin ilmenite concentrates—first results from a new global resource. Miner. Eng. 21, 587–597 (2008)CrossRefGoogle Scholar
  24. 24.
    Gao, R.: Composition of the continental crust, treatise of geochemistry, vol. 3, pp. 1–64. Elsevier, Amsterdam (2003)Google Scholar
  25. 25.
    United Nations Scientific Committee on the effects of Atomic Radiation (UNSCEAR): Report of the United Nations Scientific Committee on the Effects of Atomic Radiation. United Nations, New York (2000)Google Scholar
  26. 26.
    Mabuchi, H.: On the volatility of some polonium compounds. J. Inorg. Nucl. Chem. 25, 657–660 (1963)CrossRefGoogle Scholar
  27. 27.
    United Nations Scientific Committee on the effects of Atomic Radiation (UNSCEAR): Sources, effects and risks of ionizing radiation. In: Report to the General Assembly, with Annexes. United Nations, New York (1988)Google Scholar
  28. 28.
    Gázquez, M.J., Mantero, J., Bolívar, J.P.: Physico-chemical and radioactive characterization of TiO2 undissolved mud for its valorisation. J. Hazard. Mater. 191, 269–276 (2011)CrossRefGoogle Scholar
  29. 29.
    Orihuela, D.L.; Marijuan, J.L.: Sulfatos de hierro: su uso agrícola. Ed. University of Huelva (in Spanish), Huelva, Spain. ISBN: 9788495699749 (2003)Google Scholar
  30. 30.
    Potgieter, J.H., Potgieter, S.S., McCrindle, R.I.: A comparison of the performance of various synthetic gypsums in plant trials during the manufacturing of OPC clinker. Cem. Concr. Res. 34, 2245–2250 (2004)CrossRefGoogle Scholar
  31. 31.
    Gázquez, M.J., Bolívar, J.P., Vaca, F., Garcia-Tenorio, R., Mena-Nieto, A.: Use of the “red gypsum” industrial waste as substitute of natural gypsum for commercial cements manufacturing. Mater. Constr. (2011). doi: 10.3989/mc.2011.63910. (ISSN: 0465-2746) Google Scholar
  32. 32.
    Gázquez, M.J.: Characterization and Recovery of Waste Generated in the Industry for the Production of Titanium Dioxide (Caracterización y valorización de residuos generados en la industria de producción de dióxido de titanio). University of Huelva, Huelva (2010)Google Scholar
  33. 33.
    Chandara, C., Azizl, K.A.M., Ahmad, Z.A., Sakai, E.: Use of waste gypsum to replace natural gypsum as set retarders in Portland cement. Waste Manag 29, 1675–1679 (2009)CrossRefGoogle Scholar
  34. 34.
    Vangelatos, I., Angelopoulos, G.N., Boufournos, D.: Utilization of ferroalumina as raw material in the production of ordinary portland cement. J. Hazard. Mater. 168, 473–478 (2009)CrossRefGoogle Scholar
  35. 35.
    Özkul, M.H.: Utilisation of citro- and desul phogypsum as set retarders in Portland cement. Cem. Concr. Res. 30, 1755–1758 (2000)CrossRefGoogle Scholar
  36. 36.
    Contreras, M., Gázquez, M.J., García-Díaz, I., Alguacil, F.J., López, F.A., Bolívar, J.P.: Valorization of ilmenite mud waste for the manufacturing of sulfur polymer cements. J. Environ. Manag. 128, 625–630 (2013)CrossRefGoogle Scholar
  37. 37.
    López, F.A., Román, C.P., Padilla, I., López-Delgado, A., Alguacil, F.J.: The application of sulfur concrete to the stabilization of Hg-contaminated soil. In: Proceedings of the 1st Spanish National Conference on Advances in Materials Recycling and Eco-Energy (RECIMAT’09) Madrid, Spain, 12–13 Nov. pp 38–41. 978-84-7292-3980-0 (2009)Google Scholar
  38. 38.
    López, F.A., Gázquez, M.J., Alguacil, F.J., Bolivar, J.P., García-Díaz, I., López Coto, I.: Microencapsulation of phosphogypsum into a sulfur polymer matrix: physico chemical and radiological characterization. J. Hazard. Mater. 192, 234–245 (2011)Google Scholar
  39. 39.
    Mohamed, O.A.M., Gamal, M.: Sulfur based hazardous waste solidification. Environ. Geol. 53, 159–175 (2007)CrossRefGoogle Scholar
  40. 40.
    Khatib, J.M., Roger, M.: Absorption characteristics of metakaolin concrete. Cem. Concr. Res. 34(1), 19–29 (2004)CrossRefGoogle Scholar
  41. 41.
    Medeiros, M.H.F., Helene, P.: Surface treatment of reinforced concrete inmarine environment: influence on chloride diffusion coefficient and capillarywater absorption. Constr. Build. Mater. 23(3), 1476–1484 (2009)CrossRefGoogle Scholar
  42. 42.
    Contreras, M., Martín, M.I., Gázquez, M.J., Romero, M., Bolívar, J.P.: Valorisation of ilmenite mud waste in the manufacture of commercial ceramic. Constr. Build. Mater. 72, 31–40 (2014)CrossRefGoogle Scholar
  43. 43.
    Contreras, M., Martín, M.I., Gázquez, M.J., Romero, M., Bolívar, J.P.: Manufacture of ceramic bodies by using a mud waste from the TiO2 pigment industry. Key Eng. Mater. 663, 75–85 (2016)CrossRefGoogle Scholar
  44. 44.
    Raigón-Pichardo, M., García-Ramos, G., Sánchez-Soto, P.J.: Characterization of a waste washing solid product of mining granitic tin-bearing sands and its application as ceramic raw material. Resour. Conserv. Recycl. 17(2), 109–124 (1996)CrossRefGoogle Scholar
  45. 45.
    AENOR (Asociación Española de Normalización y Certificación-Spanish Association for Standardisation and Certification). UNE-EN 14411: Baldosas cerámicas. Definiciones, clasificación, características, evaluación de la conformidad y marcado (Ceramic tiles. Definitions, clasifications, characteristics and marking). (2003)Google Scholar
  46. 46.
    Leiva, C., Vilches, L.F., Vale, J., Fernández-Pereira, C.: Influence of type of ash on the fire resistance characteristics of ash-enriched mortars. Fuel 84, 1433–1439 (2005)CrossRefGoogle Scholar
  47. 47.
    Leiva, C., Vilches, L.F., Vale, J., Fernández-Pereira, C.: Fire resistance of biomass ash panels used for internal partitions in buildings. Fire Saf. J. 44, 622–628 (2009)CrossRefGoogle Scholar
  48. 48.
    Leiva, C., Vilches, L.F., Vale, J., Olivares, J., Fernández-Pereira, C.: Effect of carbonaceous matter contents on the fire resistance and mechanical properties of coal fly ash enriched mortars. Fuel 87, 2977–2982 (2008)CrossRefGoogle Scholar
  49. 49.
    Leiva, C., Arenas, C.G., Vilches, L.F., Vale, J., Giménez, A., Ballesteros, J.C., Fernandez-Pereira, C.: Use of FGD gypsum in fire resistant panels. Waste Manag 30, 1123–1129 (2010)CrossRefGoogle Scholar
  50. 50.
    Vilches, L.F., Fernández-Pereira, C., del Valle, J.O., Vale, J.: Recycling potential of coal fly ash and titanium waste as new fireproof products. Chem. Eng. J. 95, 155–161 (2003)CrossRefGoogle Scholar
  51. 51.
    Vilches, L.F., Leiva, C., Vale, J., Fernández-Pereira, C.: Insulating capacity of fly ash pastes used for passive protection against fire. Cem. Concr. Compos. 27, 776–781 (2005)CrossRefGoogle Scholar
  52. 52.
    Arenas, C.G., Marrero, M., Leiva, C., Solís-Guzmán, J., Arenas, L.F.V.: High fire resistances in blocks containing coal combustion fly ashes and bottom ash. Waste Manag 31(2011), 1783–1789 (2011)CrossRefGoogle Scholar
  53. 53.
    Pérez-Moreno, S.M., Gázquez, M.J., Bolívar, J.P.: CO2 sequestration by indirect carbonation of artificial gypsum generated in the manufacture of titanium dioxide pigments. Chem. Eng. J. 262, 737–746 (2015)CrossRefGoogle Scholar
  54. 54.
    Cárdenas-Escudero, C., Morales-Flórez, V., Pérez-López, R., Santos, A., Esquivas, L.: Procedure to use phosphogypsum industrial waste for mineral CO2 sequestration. J. Hazard. Mater. 196, 431–435 (2011)CrossRefGoogle Scholar
  55. 55.
    Contreras, M., Pérez-López, R., Gázquez, M.J., Morales-Flórez, V., Santos, A., Esquivias, L., Bolívar, J.P.: Fractionation and fluxes of metals and radionuclides during the recycling process of phosphogypsum wastes applied to mineral CO2 sequestration. Waste Manag 45(2015), 412–419 (2015)CrossRefGoogle Scholar
  56. 56.
    Directive 2013/59/EURATOM, of 5 December 2013. Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiationGoogle Scholar
  57. 57.
    Kovler, K.: Radiological constraints of using building materials and industrialby-products. Constr. Build. Mater. 23, 246–253 (2009)CrossRefGoogle Scholar
  58. 58.
    Epa, U.S.: Test methods for evaluating solid waste—physical chemical methods, SW-846. US Environmental Protection Agency, Washington, DC (1997)Google Scholar
  59. 59.
    Hierro, A., Martín, J.E., Olías, M., García, C., Bolivar, J.P.: Uranium behaviour during a tidal cycle in an estuarine system affected by acid mine drainage. Chem. Geo. 342, 110–118 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • M. Contreras
    • 1
    Email author
  • M. J. Gázquez
    • 1
    • 2
  • S. M. Pérez-Moreno
    • 1
  • M. Romero
    • 3
  • J. P. Bolívar
    • 1
  1. 1.Department of Applied PhysicsUniversity of HuelvaHuelvaSpain
  2. 2.Departament of Applied PhysicsEscuela Superior de IngenieríaCádizSpain
  3. 3.Group of Vitreous and Ceramic Materials, Department of Construction MaterialsInstitute of Building Sciences Eduardo Torroja IETcc-CSICMadridSpain

Personalised recommendations