Skip to main content

Advertisement

Log in

Biohydrogen Production from Liquid and Solid Fractions of Sugarcane Bagasse After Optimized Pretreatment with Hydrochloric Acid

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This work determined the optimal conditions to pretreat sucargane bagasse with HCl by using the liquid and the solid fractions resulting from the bagasse pretreament as substrate for fermentative hydrogen production by a mixed culture. A 23 full factorial central composite design (star configuration) helped to determine how temperature, time, and acid concentration affected the total monosaccharides (TM), total reducing sugars (TRS), and total inhibitors (TI) concentrations in the liquid fraction. Temperature, time, and acid concentration impacted the TRS and TM concentrations, but these variables did not influence the TI concentration significantly. The optimal pretreatment conditions were HCl at 7.36 % (v/v), 96.8 °C, and 441.6 min, which afforded the highest TRS concentration in the liquid hydrolysates. The liquid fraction obtained from the bagasse pretreated with acid under the optimal conditions (designated liq) was not suitable for H2 production by the mixed culture before treatment of the fraction with activated carbon. The solid residual bagasse (designated sol) alone afforded 6.0 mL of H2/g of bagasse. Liq treated with 10 % (m/v) activated carbon, to give liq + C, and sol added with the enzyme Celluclast® 10 U g−1, to afford sol + E, yielded 45.3 and 7.8 mL of H2/g of bagasse respectively, which amounted to 53.1 mL of H2/g of bagasse. The volumetric productivities—1450 and 1423 mL of H2 L−1 d−1 for liq + C and sol + E, respectively—are the highest ever reported in the literature for H2 production from sugarcane bagasse by a microbial consortium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Instituto Brasileiro de Geografia e Estatística - IBGE. Anuário Estatístico do Brasil, v.73, ISSN 0100-1299 (2013)

  2. Hofsetz, K., Silva, M.A.: Brazilian sugarcane bagasse: energy and non-energyconsumption. Biomass Bioenergy 46, 564–573 (2012)

    Article  Google Scholar 

  3. Pattra, S., Sangyoka, S., Boonmee, M., Reungsang, A.: Bio-hydrogen production from the fermentation of sugarcane bagasse hydrolysate by Clostridium butyricum. Int. J. Hydrog. Energy 33, 5256–5265 (2008)

    Article  Google Scholar 

  4. Chairattanamanokorn, P., Penthamkeerati, P., Reungsang, A., Lo, Y.-C., Lu, W.B., Chang, J.S.: Production of biohydrogen from hydrolyzed bagasse with thermally preheated sludge. Int. J. Hydrog. Energy 34, 7612–7617 (2009)

    Article  Google Scholar 

  5. Cheng, C.L., Chang, J.S.: Hydrolysis of lignocellulosic feedstock by novel cellulases originating from Pseudomonas sp. CL3 for fermentative hydrogen production. Bioresour. Technol. 102, 8628–8634 (2011)

    Article  Google Scholar 

  6. Fangkum, A., Reungsang, A.: Biohydrogen production from sugarcane bagasse hydrolysate by elephant dung: effects of initial pH and substrate concentration. Int. J. Hydrog. Energy 36, 8687–8696 (2011)

    Article  Google Scholar 

  7. Lai, Z., Zhu, M., Yang, X., Wang, J., Li, S.: Optimization of key factors affecting hydrogen production from sugarcane bagasse by a thermophilic anaerobic pure culture. Biotechnol. Biofuels 7, 119–130 (2014)

    Google Scholar 

  8. Ntaikou, I., Antonopoulou, G., Lyberatos, G.: Biohydrogen production from biomass and wastes via dark fermentation: a review. Waste Biomass Valor. 1, 21–39 (2010)

    Article  Google Scholar 

  9. Rezende, C.A., de Lima, M.A., Maziero, P., de Azevedo, E.R., Garcia, W., Polikarpov, I.: Chemical and morphological characterization of sugarcane bagasse submitted to a delignification process for enhanced enzymatic digestibility. Biotechnol. Biofuels 4, 1–18 (2011)

    Article  Google Scholar 

  10. Alvira, P., Tomás-Pejó, E., Ballesteros, M., Negro, M.J.: Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresour. Technol. 101, 4851–4861 (2010)

    Article  Google Scholar 

  11. Monlau, F., Barakat, A., Trably, E., Dumas, C., Steyer, J.-P., Carrere, H.: Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit. Rev. Environ. Sci. Technol. 43, 260–322 (2013)

    Article  Google Scholar 

  12. Saripan, A.F., Reungsang, A.: Biohydrogen production by Thermoanaerobacterium thermosaccharolyticum KKU-ED1: culture conditions optimization using xylan as the substrate. Int. J. Hydrog. Energy 38, 6167–6173 (2013)

    Article  Google Scholar 

  13. Lavarack, B.P., Griffin, G.J., Rodman, D.: The acid hydrolysis of sugarcane bagasse hemicellulose to produce xylose, arabinose, glucose and other products. Biomass Bioenergy 23, 367–380 (2002)

    Article  Google Scholar 

  14. Jonsson, L., Alriksson, B.: Nilvebrant N–O bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6, 16–22 (2013)

    Article  Google Scholar 

  15. Valdez-Vazquez, I., Poggi-Varaldo, H.M.: Hydrogen production by fermentative consortia. Renew. Sustain. Energy Rev. 13, 1000–1013 (2009)

    Article  Google Scholar 

  16. Derringer, G., Suich, R.: Simultaneous optimization of several response variables. J. Qual. Technol. 12, 214–219 (1980)

    Google Scholar 

  17. Gonzalez-Gil, G., Kleerebezem, R., Lettinga, G.: Assessment of metabolic properties and kinetic parameters of methanogenic sludge by on-line methane production rate measurements. Appl. Microbiol. Biotechnol. 58, 248–254 (2002)

    Article  Google Scholar 

  18. Buitrón, G., Carvajal, C.: Biohydrogen production from Tequila vinasses in an anaerobic sequencing batch reactor: effect of initial substrate concentration, temperature and hydraulic retention time. Bioresour. Technol. 101, 9071–9077 (2010)

    Article  Google Scholar 

  19. Hargraeves, P.I., Barcelos, C.A., Costa, A.C.A., Pereira Jr, N.: Production of ethanol 3G from Kappaphycus alvarezii: evaluation of different process strategies. Bioresour. Technol. 134, 257–263 (2013)

    Article  Google Scholar 

  20. Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59, 257–268 (1987)

    Google Scholar 

  21. García-Morales, J.L., Nebot, E., Romero, L.I., Sales, D.: Comparison between acidogenic and methanogenic inhibition caused by liner alkylbenzzene-sulfonate (LAS). Chem. Biochem. Eng. Q. 15, 13–19 (2001)

    Google Scholar 

  22. Sun, J.: Isolation and characterization of cellulose from sugarcane bagasse. Polym. Degrad Stabil. 84, 331–339 (2004)

    Article  Google Scholar 

  23. TAPPI. TAPPI Standard. Method T19 om-54. TAPPI test methods (1991)

  24. Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of structural carbohydrates and lignin in biomass. Technical Report. NREL/TP-510-42618 (2012)

  25. APHA, AWWA, WEF. Standard methods for the examination of water and wastewater. 19th. edn. American Public Health Association. Washington, DC (1995)

  26. Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugars. Anal. Chem. 30, 785–793 (1959)

    Google Scholar 

  27. Sá, L.R.V., de Oliveira, M.A.L., Cammarota, M.C., Matos, A., Ferreira-Leitão, V.S.: Simultaneous analysis of carboydrates and volatile fatty acids by HPLC for monitoring fermentative biohydrogen production. Int. J. Hydrog. Energy 36, 7543–7549 (2011)

    Article  Google Scholar 

  28. Monlau, F., Barakat, A., Trably, E., Dumas, C., Steyer, J.P., Carrère, H.: Lignocellulosic materials into biohydrogen and biomethane: impact of structural features and pretreatment. Crit. Rev. Environ. Sci. Technol. 43, 260–322 (2013)

    Article  Google Scholar 

  29. Klinke, H.B., Thomsen, A.B., Ahring, B.K.: Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Appl. Microbiol. Biotechnol. 66, 10–26 (2004)

    Article  Google Scholar 

  30. Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100, 10–18 (2009)

    Article  Google Scholar 

  31. Rai, P.K., Singh, S.P., Asthana, R.K., Singh, S.: Biohydrogen production from sugarcane bagasse by integrating dark- and photo-fermentation. Bioresour. Technol. 152, 140–146 (2014)

    Article  Google Scholar 

  32. Martin, C., Klinke, H., Thomsen, A.B.: Wet oxidation as a pretreatment method for enhancing the enzymatic convertibility of sugarcane bagasse. Enzyme Microbial. Technol. 40, 426–432 (2007)

    Article  Google Scholar 

  33. Visser, E.M., Leal, T.F., Almeida, M.N., Guimarães, V.M.: Increased enzymatic hydrolysis of sugarcane bagasse from enzyme recycling. Biotechnol. Biofuels 8, 5 (2015)

    Article  Google Scholar 

  34. Canilha, L., Carvalho, W., Felipe, M.G.A., Silva, J.B.A.: Xylitol production from wheat straw hemicellulosic hydrolysate: hydrolysate detoxification and carbon source used for inoculum preparation. Brazilian J. Microbiol. 39, 333–336 (2008)

    Article  Google Scholar 

  35. Quermeneur, M., Hamelin, J., Barakat, A., Steyer, J.P., Carrere, H., Trably, E.: Inhibition of fermentative hydrogen production by lignocellulose-derived compounds in mixed cultures. Int. J. Hydrog. Energy 37, 3150–3159 (2012)

    Article  Google Scholar 

  36. Wang, Y., Zhao, Q.B., Yang, M., Yu, H.Q., Harad, H., Li, Y.Y.: Biohydrogen production with mixed anaerobic cultures in the presence of high-concentration acetate. Int. J. Hydrog. Energy 33, 1164–1171 (2008)

    Article  Google Scholar 

  37. Hernández-Salas, J.M., Villa-Ramírez, M.S., Veloz-Rendón, J.S., Rivera-Hernández, K.N., González-César, R.A., Plascencia-Espinosa, M.A., Trejo-Estrada, S.R.: Comparative hydrolysis and fermentation of sugarcane and agave bagasse. Bioresour. Technol. 100, 1238–1245 (2009)

    Article  Google Scholar 

  38. Matsumoto, M., Nishimura, Y.: Hydrogen production by fermentation using acetic acid and lactic acid. J. Biosci. Bioeng. 103, 236–241 (2007)

    Article  Google Scholar 

  39. Monlau, F., Sambusiti, C., Barakat, A., Quéméneur, M., Trably, E., Steyer, J.-P., Carrère, H.: Do furanic and phenolic compounds of lignocellulosic and algae biomass hydrolyzate inhibit anaerobic mixed cultures? A comprehensive review. Biotechnol. Adv. 32, 934–951 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

The authors wish to thank ‘Programa de Aperfeiçoamento de Pessoal de Nível Superior’ (CAPES) as well as “Fundação de Amaro à Pesquisa do Estado de São Paulo” (FAPESP) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Valeria Reginatto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorencini, P., Siqueira, M.R., Maniglia, B.C. et al. Biohydrogen Production from Liquid and Solid Fractions of Sugarcane Bagasse After Optimized Pretreatment with Hydrochloric Acid. Waste Biomass Valor 7, 1017–1029 (2016). https://doi.org/10.1007/s12649-016-9494-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-016-9494-4

Keywords

Navigation