Waste and Biomass Valorization

, Volume 7, Issue 4, pp 649–657 | Cite as

Characterization of Hotel Bio-waste by Means of Simultaneous Thermal Analysis

  • S. Vakalis
  • A. Sotiropoulos
  • K. Moustakas
  • D. Malamis
  • K. Vekkos
  • M. Baratieri
Original Paper


Sustainable waste management has been assisted by the introduction of corresponding legislation. Organic biodegradable wastes, primarily food waste, represent a significant fraction of the total waste amount. Collecting, separating and pretreating biodegradable waste has faced various difficulties which can be controlled in more centralized waste generation points like hotels. By pre-treating/drying the feedstock, several processing strategies can become viable. In the framework of this study, dried hotel waste are characterized by means of simultaneous thermal analysis, i.e. STA. High performance liquid chromatography and elemental analysis were applied for the validation and further analysis of the recovered curves. The interpretation of the results showed the relation between the heating rate and the decomposition rate. In addition, the parameters that may convert the decomposition from endothermic to exothermic were identified.


Biowaste Drying Decomposition Waste management Thermal processes Hospitality sector 


  1. 1.
    Waste Framework Directive [2008/98/EC] of the European Parliament and of the European CouncilGoogle Scholar
  2. 2.
    EUROSTAT: Energy, transport and environment indicators. Pocketbooks 2014 edition (2014)Google Scholar
  3. 3.
    Al Seadi, T., Owen, N., Hellström, H., Kang, H.: Source separation of MSW: an overview of the source separation and separate collection of the digestible fraction of household waste, and of other similar wastes from municipalities, aimed to be used as feedstock for anaerobic digestion in biogas plants, pp. 7–10. IEA Bioenergy. (2013). ISBN 978-1-910154-01-4Google Scholar
  4. 4.
    Mirabella, N., Castellani, V., Sala, S.: Current options for the valorization of food manufacturing waste: a review. J. Clean. Prod. 65, 28–41 (2014)CrossRefGoogle Scholar
  5. 5.
    Eurostat: Municipal waste treated in 2012 by country and treatment category, sorted by landfilling. Retrieved online: (2012). Accessed 25 May 2015
  6. 6.
    Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C., Gamble, P.: Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98(4), 929–935 (2007)CrossRefGoogle Scholar
  7. 7.
    Uçkun Kiran, E., Trzcinski, A.P., Ng, W.J., Liu, Y.: Bioconversion of food waste to energy: a review. Fuel 134, 389–399 (2014)CrossRefGoogle Scholar
  8. 8.
    De Baere, L., Mattheeuws, B.: Anaerobic digestion of the organic fraction of municipal solid waste in Europe: status, experience and prospects. In: Waste management, vol. 3. ISBN 978-3-935317-83-2 (2012)Google Scholar
  9. 9.
    Bernstad, A., La Cour Jansen, J.: Review of comparative LCAs of food waste management systems–current status and potential improvements. Waste Manag 32(12), 2439–2455 (2012)CrossRefGoogle Scholar
  10. 10.
    Morris, C., Brody, A.L., Wicker, L.: Non-thermal food processing/preservation technologies: a review with packaging implications. Packag. Technol. Sci. 20, 275–286 (2007)CrossRefGoogle Scholar
  11. 11.
    Pham, T.P.T., Kaushik, R., Parshetti, G.K., Mahmood, R., Balasubramanian, R.: Food waste-to-energy conversion technologies: current status and future directions. Waste Manag 38, 399–408 (2015)CrossRefGoogle Scholar
  12. 12.
    Chahid, A., Hilali, M., Benlhachimi, A., Bouzid, T.: Contents of cadmium, mercury and lead in fish from the Atlantic sea (Morocco) determined by atomic absorption spectrometry. Food Chem. 147, 357–360 (2014)CrossRefGoogle Scholar
  13. 13.
    Shahbazi, Y., Ahmadi, F., Fakhari, F.: Voltammetric determination of Pb, Cd, Zn, Cu and Se in milk and dairy products collected from Iran: an emphasis on permissible limits and risk assessment of exposure to heavy metals. Food Chem. 192, 1060–1067 (2016)CrossRefGoogle Scholar
  14. 14.
    Dziubanek, G., Piekut, A., Rusin, M., Baranowska, R., Hajok, I.: Contamination of food crops grown on soils with elevated heavy metals content. Ecotoxicol. Environ. Saf. 118, 183–189 (2015)CrossRefGoogle Scholar
  15. 15.
    Broun, R., Sattler, M.: A comparison of greenhouse gas emissions and potential electricity recovery from conventional and bioreactor landfills. J. Clean. Prod. 112, 2664–2673 (2016)CrossRefGoogle Scholar
  16. 16.
    Zhang, Q.Q., Tian, B.H., Zhang, X., Ghulan, A., Fang, C.R., He, R.: Investigation on characteristics of leachate and concentrated leachate in three landfill leachate treatment plants. Waste Manag 33(11), 2277–2286 (2013)CrossRefGoogle Scholar
  17. 17.
    Xiaoli, Chai, Shimaoka, Takayuki, Xianyan, Cao, Qiang, Guo, Youcai, Zhao: Characteristics and mobility of heavy metals in an MSW landfill: implications in risk assessment and reclamation. J. Hazard. Mater. 144(1–2), 485–491 (2007)CrossRefGoogle Scholar
  18. 18.
    Jensen, D.L., Ledin, A., Christensen, T.H.: Christensen, speciation of heavy metals in landfill-leachate polluted groundwater. Water Res. 33(11), 2642–2650 (1999)CrossRefGoogle Scholar
  19. 19.
    Ward, M.L., Bitton, G., Townsend, T.: Heavy metal binding capacity (HMBC) of municipal solid waste landfill leachates. Chemosphere 60(2), 206–215 (2005)CrossRefGoogle Scholar
  20. 20.
    Alburquerque, J.A., de la Fuente, C., Ferrer-Costa, A., Carrasco, L., Cegarra, J., Abad, M., Bernal, M.P.: Assessment of the fertiliser potential of digestates from farm and agroindustrial residues. Biomass Bioenerg. 40, 181–189 (2012)CrossRefGoogle Scholar
  21. 21.
    Nzihou, Ange, Stanmore, Brian: The fate of heavy metals during combustion and gasification of contaminated biomass—a brief review. J. Hazard. Mater. Vol. 256–257, 56–66 (2013)CrossRefGoogle Scholar
  22. 22.
    Thi, N.B.D., Kumar, G., Lin, C.Y.: An overview of food waste management in developing countries: current status and future perspective. J. Environ. Manag. 157, 220–229 (2015)CrossRefGoogle Scholar
  23. 23.
    Girotto, F., Alibardi, L., Cossu, R.: Food waste generation and industrial uses: a review. Waste Manag 45, 32–41 (2015)CrossRefGoogle Scholar
  24. 24.
    Graham-Rowe, E., Jessop, D.C., Sparks, P.: Identifying motivations and barriers to minimizing household food waste. Resour. Conserv. Recycl. 84, 15–23 (2014)CrossRefGoogle Scholar
  25. 25.
    Sotiropoulos, A., Malamis, D., Loizidou, M.: Dehydration of domestic food waste at source as an alternative approach for food waste management. Waste Biomass Valor. 6, 167–176 (2015)CrossRefGoogle Scholar
  26. 26.
    Pirani, S.I., Arafat, H.A.: Solid waste management in the hospitality industry: a review. J. Environ. Manag. 146, 320–336 (2014)CrossRefGoogle Scholar
  27. 27.
    Chan, E.S.W., Hon, A.H.Y., Chan, W., Okumus, F.: What drives employees’ intentions to implement green practices in hotels? The role of knowledge, awareness, concern and ecological behavior. Int. J. Hosp. Manag. 40, 20–28 (2014)CrossRefGoogle Scholar
  28. 28.
    Han, H., Yoon, H.J.: Hotel customers’ environmentally responsible behavioral intention: impact of key constructs on decision in green consumerism. Int. J. Hosp. Manag. 45, 22–33 (2015)CrossRefGoogle Scholar
  29. 29.
    Molina-Azorín, J.F., Tarí, J.J., Pereira-Moliner, J., López-Gamero, M.D., Pertusa-Ortega, E.M.: The effects of quality and environmental management on competitive advantage: a mixed methods study in the hotel industry. Tour. Manag. 50, 41–54 (2015)CrossRefGoogle Scholar
  30. 30.
    Singh, N., Cranage, D., Lee, S.: Green strategies for hotels: estimation of recycling benefits. Int. J. Hosp. Manag. 43, 13–22 (2014)CrossRefGoogle Scholar
  31. 31.
    Papargyropoulou, E., Wright, N., Lozano, R., Steinberger, J., Padfield, R., Ujang, Z.: Conceptual framework for the study of food waste generation and prevention in the hospitality sector, Waste Manag. (2016)Google Scholar
  32. 32.
    Kallbekken, S., Saelen, H.: ‘Nudging’ hotel guests to reduce food waste as a win–win environmental measure. Econ. Lett. 119(3), 325–327 (2013)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Cheng, K., Winter, W.T., Stipanovic, A.J.: A modulated-TGA approach to the kinetics of lignocellulosic biomass pyrolysis/combustion. Polym. Degrad. Stabil. 97(9), 1606–1615 (2012)CrossRefGoogle Scholar
  34. 34.
    Meng, A., Chen, S., Long, Y., Zhou, H., Zhang, Y., Li, Q.: Pyrolysis and gasification of typical components in wastes with macro-TGA. Waste Manag 46, 247–256 (2015)CrossRefGoogle Scholar
  35. 35.
    Sonobe, T., Worasuwannarak, N.: Kinetic analyses of biomass pyrolysis using the distributed activation energy model. Fuel 87(3), 414–421 (2008)CrossRefGoogle Scholar
  36. 36.
    Skodras, G., Grammelis, P., Basinas, P., Kaldis, S., Kakaras, E., Sakellaropoulos, G.P.: Kinetic study on the devolatilisation of animal derived byproducts. Fuel Process. Technol. 88(8), 787–794 (2007)CrossRefGoogle Scholar
  37. 37.
    Liu, X., Yu, L., Xie, F., Li, M., Chen, L., Li, X.: Kinetics and mechanism of thermal decomposition of cornstarches with different amylose/amylopectin ratios. Starch-Stärke 62(3–4), 139–146 (2010)CrossRefGoogle Scholar
  38. 38.
    Slopiecka, K., Bartocci, P., Fantozzi, F.: Thermogravimetric analysis and kinetic study of poplar wood pyrolysis. In: Proceedings for the third international conference on applied energy, pp. 1687–1698. Perugia, 16–18 May 2011Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • S. Vakalis
    • 1
  • A. Sotiropoulos
    • 2
  • K. Moustakas
    • 2
  • D. Malamis
    • 2
  • K. Vekkos
    • 3
  • M. Baratieri
    • 1
  1. 1.Faculty of Science and TechnologyFree University of BolzanoBolzanoItaly
  2. 2.School of Chemical EngineeringNational Technical University of AthensAthensGreece
  3. 3.EcoVRS, Vekkos Recycling SolutionAthensGreece

Personalised recommendations