Skip to main content
Log in

Utilization of Waste and Under-utilized Pongamia pinnata Seed Oil for Acquiring Maximal Process to Get Ameliorate Yield of Biodiesel Through Response Surface Methodology

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aim of this study was to use the under-utilized vegetable seed oil and produce high and better yield of biodiesel. The response surface methodology (RSM) was used, based on central composite rotatable design (CCRD), to optimize four trans-esterification reaction variables for getting high yield: catalyst concentration (CC; 0.25–1.0 %), reaction temperature (RT; 45–65 °C), CH3OH-to-oil molar ratio (6:1–12:1) and reaction time (30–90 min). The 24 full factorial CCRD design was applied, using four different parameters at five levels, each lead to 30 experiments to produce Pongamia pinnata oil-methyl esters (POMEs). The molar ratio of CH3OH to oil and RT were the most significant (p < 0.01) factors affecting the yield of POMEs. A linear relationship was recorded between the observed and predicted values (R 2 = 0.9744). Using multiple regression analysis a quadratic polynomial equation was recognized for methyl ester yield (MEY). The quadratic term of CC showed a significant (p < 0.0001) impact on esters yield. The interaction terms of CH3OH to oil molar ratio and CC with reaction time exhibited a +ve effect on the MEY (p < 0.05). The optimum reaction conditions for trans-esterification of oils were 6.1 CH3OH to oil ratio, 1.0 % CC, 65 °C RT and 1:30 h reaction time, resulting in Pongamia oil MEY of 94.88 %. The RSM was found to be a suitable technique for optimizing trans-esterification process and produced fuel was within the ranges of ASTM D6751 and EN 14214 standards.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Karmee, S.K., Patria, R.D., Lin, C.S.K.: Techno-economic evaluation of biodiesel production from waste cooking oil—a case study of Hong Kong. Int. J. Mol. Sci. 16, 4362–4371 (2015)

    Article  Google Scholar 

  2. Zhang, W.J., Liu, C.H.: Some thoughts on global climate change: will it get warmer and warmer? Environ. Skept. Crit. 1, 1–7 (2012)

    Google Scholar 

  3. Zhang, W.J., Wu, S.H.: Current status, crisis and conservation of coral reef ecosystems in China. Proc. Int. Acad. Ecol. Environ. Sci. 2, 1–11 (2012)

    Google Scholar 

  4. Knothe, G., Van Gerpen, J., Krahl, J.: The Biodiesel Handbook, 2nd edn. AOCS Press, Urbana (2010)

    Google Scholar 

  5. Mittelbach, M., Remschmidt, C.: Biodiesel: The Comprehensive Handbook. Martin Mittelbach, Graz (2004)

    Google Scholar 

  6. Hoydoncx, H.E., De Vos, D.E., Chavan, S.A., Jacobs, P.A.: Esterification and transesterification of renewable chemicals. Topic Catal. 27, 83–96 (2004)

    Article  Google Scholar 

  7. Saka, S., Sukdiana, D.: Biodiesel fuel from rapeseed oil as prepared in supercritical methanol. Fuel 80, 225–231 (2001)

    Article  Google Scholar 

  8. Vasudevan, P.T., Briggs, M.: Biodiesel production—current state of the art and challenges. J. Ind. Microbiol. Biotechnol. 35, 421–430 (2008)

    Article  Google Scholar 

  9. Knothe, G., Van Gerpen, J.H., Krahl, J.: The biodiesel handbook. AOCS Press, Champaign (2005)

    Book  Google Scholar 

  10. Moser, B.R.: Biodiesel production, properties and feedstock. In Vitro Cell. Dev. Biol.—Plant 45, 229–266 (2009)

    Article  Google Scholar 

  11. Karmee, S.K., Lin, C.S.K.: Lipids from food waste as feedstock for biodiesel production: case Hong Kong. Lipid Technol. 26, 206–209 (2014)

    Article  Google Scholar 

  12. Chiu, C.W., Schumacher, L.G., Suppes, G.J.: Impact of cold flow improvers on soybean biodiesel blend. Biomass Bioenergy 27, 485–491 (2004)

    Article  Google Scholar 

  13. Soriano, N.U., Migo, V.P., Sato, K., Matsumura, M.: Ozonizedvegetable oil as pour point depressant for neat biodiesel. Fuel 85, 25–31 (2006)

    Article  Google Scholar 

  14. Soriano, N.U., Migo, V.P., Sato, K., Matsumura, M.: Crystallization behavior of neat biodiesel and biodiesel treated with ozonized vegetable oil. Eur. J. Lipid Sci. Technol. 107, 689–696 (2005)

    Article  Google Scholar 

  15. Sern, C.H., May, C.Y., Zakaria, Z., Daik, R., Foon, C.S.: The effect of polymers and surfactants on the pour point of palm oil methyl esters. Eur. J. Lipid Sci. Technol. 109, 440–444 (2007)

    Article  Google Scholar 

  16. Hancsok, J., Bubalik, M., Beck, A., Baladincz, J.: Development of multifunctional additives based on vegetable oils for high quality diesel and biodiesel. Chem. Eng. Res. Des. 86, 793–799 (2008)

    Article  Google Scholar 

  17. Moser, B.R., Cermak, S.C., Isbell, T.A.: Evaluation of castor and lesquerella oil derivatives as additives in biodiesel and ultra low sulfur diesel fuel. Energy Fuels 22, 1349–1352 (2008)

    Article  Google Scholar 

  18. Moser, B.R., Erhan, S.Z.: Branched chain derivatives of alkyl oleates: tribological, rheological, oxidation, and low temperature properties. Fuel 87, 2253–2257 (2008)

    Article  Google Scholar 

  19. Mittelbach, M., Schober, S.: The influence of antioxidants on the oxidation stability of biodiesel. JAOCS 80, 817–823 (2003)

    Google Scholar 

  20. Loh, S.K., Chew, S.M., Choo, Y.M.: Oxidative stability and storage behavior of fatty acid methyl esters derived from used palm oil. JAOCS 83, 947–952 (2006)

    Google Scholar 

  21. Tang, H., Wang, A., Salley, S.O., Ng, K.Y.S.: The effect of natural and synthetic antioxidants on the oxidative stability of biodiesel. JAOCS 85, 373–382 (2008)

    Google Scholar 

  22. Benjumea, P., Agudelo, J., Agudelo, A.: Basic properties of palm oil biodiesel-diesel blends. Fuel 87, 2069–2075 (2008)

    Article  Google Scholar 

  23. Bondioli, P., Gasparoli, A., Bella, L.D., Tagliabue, S., Toso, G.: Biodiesel stability under commercial storage conditions over one year. Eur. J. Lipid Sci. Technol. 105, 35–74 (2003)

    Article  Google Scholar 

  24. Dunn, R.O., Shcokley, M.W., Bagby, M.O.: Winterized methyl esters from soybean oil: an alternative diesel fuel with improved low temperature properties. JAOCS 73, 1719–1728 (1996)

    Google Scholar 

  25. Kerschbaum, S., Rinke, G., Schubert, K.: Winterization of biodiesel by mirco process engineering. Fuel 87, 2590–2597 (2008)

    Article  Google Scholar 

  26. Lee, I., Johnson, L.A., Hammond, E.G.: Use of branched-chain esters to reduce the crystallization temperature of biodiesel. JAOCS 72, 1155–1160 (1995)

    Google Scholar 

  27. Foglia, T.A., Nelson, L.A., Dunn, R.O., Marmer, W.N.: Low temperature properties of alkyl esters of tallow and grease. JAOCS 74, 951–955 (1997)

    Google Scholar 

  28. Wu, W.H., Foglia, T.A., Marmer, W.N., Dunn, R.O., Goering, C.E., Briggs, T.E.: Low-temperature property and engine performance evaluation of ethyl and isopropyl esters of tallow and grease. JAOCS 75, 1173–1177 (1998)

    Google Scholar 

  29. Ghadge, S.V., Raheman, H.: Process optimization for biodiesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresour. Technol. 97, 379–384 (2006)

    Article  Google Scholar 

  30. Domingos, A.K., Saad, E.B., Wilhelm, H.M., Ramos, L.P.: Optimization of the ethanolysis of Raphanussativus (L. Var) crude oil applying the response surface methodology. Bioresour. Technol. 99, 1837–1845 (2008)

    Article  Google Scholar 

  31. Jaya, N., Selvan, B.K., Vennison, S.J.: Synthesis of biodiesel from pongamia oil using heterogeneous ion-exchange resin catalyst. Ecotoxicol. Environ. Saf. 121, 3–9 (2015)

    Article  Google Scholar 

  32. Scott, P.T., Pregelj, L., Chen, N., Hadler, J.S., Djordjevic, M.A., Gresshoff, P.M.: Pongamia pinnata: an untapped resource for the biofuels industry of the future. BioEnergy Res. 1, 2–11 (2008)

    Article  Google Scholar 

  33. Montgomery, D.C.: Design and Analysis of Experiments. Wiley, New York (2001)

    Google Scholar 

  34. Draper, N.R., Smith, H.: Applied regression analysis, 2nd edn. Wiley, New York (1981)

    MATH  Google Scholar 

  35. Rashid, U., Anwar, F., Ansari, T.M., Arif, M., Ahmad, M.: Optimization of alkaline transesterification of rice bran oil for biodiesel production using response surface technology. J. Chem. Technol. Biotechnol. 84, 1364–1370 (2009)

    Article  Google Scholar 

  36. Meher, L.C., Naik, S.N., Das, L.M.: Methanolysis of pongamiapinnata (karanja) oil for biodiesel production. J. Sci. Ind. Res. 63, 913–918 (2004)

    Google Scholar 

  37. Silverstein, R.M., Webster, F.X.: Spectrometric identification of organic compounds, 6th edn. Wiley, New York (1998)

    Google Scholar 

  38. Rashid, U., Anwar, F., Knothe, G.: Biodiesel from Milo (Thespesiapopulnea L.) seed oil. Biomass Bioenergy 35, 4034–4039 (2011)

    Article  Google Scholar 

  39. Oliveira, J.S., Montalvao, R., Daher, L., Suarez, P.A.Z., Rubim, J.C.: Determination of methyl ester contents in biodiesel blends by FTIR-ATR and FTNIR spectroscopies. Talanta 69, 1278 (2006)

    Article  Google Scholar 

  40. Ladommatos, N., Parsi, M., Knowles, A.: The effect of fuel cetane improver on diesel pollutant emissions. Fuel 75, 8–14 (1996)

    Article  Google Scholar 

  41. Knothe, G., Matheaus, A.C., Ryan, T.W.: Cetane numbers of branched and straight-chain fatty esters determined in an ignition quality tester. Fuel 82, 971–975 (2003)

    Article  Google Scholar 

  42. Lewtas, K., Tack, R.D., Beiny, D.H.M., Mullin, J.W.: Wax crystallization in diesel fuel: habit modification and the growth of n-alkane crystals. In: Garside, J., Davey, R.J., Jones, A.G. (eds.) Advances in Industrial Crystallization, pp. 166–179. Butterworth-Heinemann, Oxford (1991)

    Google Scholar 

  43. Chandler, J.E., Horneck, F.G., Brown, G.I.: The effect of cold flow additives on low temperature operability of diesel fuels. In: Proceedings of the SAE International Fuels and Lubricants Meeting and Exposition, San Francisco, CA, SAE Paper No. 922186, Warrendale, PA (1992)

  44. Owen, K., Coley, T.: Automotive Fuels Handbook, Society of Automotive Engineers, Warrendale, PA, pp. 353–403 (1990)

  45. Westbrook, S.R. In: Rand, S.J. (ed.) Significance of Tests for Petroleum Products, 7th ed., pp. 63–81. ASTM International, West Conshohocken, PA (2003)

  46. Botros, M.G. Enhancing the cold flow behavior of diesel fuels. In: Gasoline and Diesel Fuel: Performance and Additives, SAE Special Publication SP-1302, Paper No. 972899, Society of Automotive Engineers, Warrendale, PA (1997)

  47. Chevron, U.S.A. Inc., Diesel Fuel Technical Review (FTR-2), San Francisco (1998)

Download references

Acknowledgments

The authors would like to acknowledge Attock Oil Refinery of Pakistan for analyzing different fuel property tests. We also want to thank Dr. Farooq Anwar from the Department of Chemistry, University of Sargodha Pakistan for the valuable suggestion and guidance during the completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tahir Mehmood.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mehmood, T., Shaheen, Z., Malik, S.A. et al. Utilization of Waste and Under-utilized Pongamia pinnata Seed Oil for Acquiring Maximal Process to Get Ameliorate Yield of Biodiesel Through Response Surface Methodology. Waste Biomass Valor 7, 495–506 (2016). https://doi.org/10.1007/s12649-015-9472-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9472-2

Keywords

Profiles

  1. Tahir Mehmood