Waste and Biomass Valorization

, Volume 7, Issue 2, pp 237–266 | Cite as

Environmental Friendly Fluidized Bed Combustion of Solid Fuels: A Review About Local Scale Modeling of Char Heterogeneous Combustion

  • Germán D. Mazza
  • José M. Soria
  • Daniel Gauthier
  • Andrés Reyes Urrutia
  • Mariana Zambon
  • Gilles FlamantEmail author



Fluidized bed combustion is currently intensively developed throughout the world to produce energy from several types of solid fuels, while significantly reducing pollutant emissions with respect to conventional combustion units. Accurate models must be formulated at both bed and particle levels to operate efficiently such units, since local phenomena such as particle temperature and combustion rate are crucial aspects for process improvement and control. In this sense, this article proposes a classification of local scale models to represent the evolution of char heterogeneous combustion of any carbonaceous particles.


Existing models are described and classified based on the characteristics of the governing equations, the thermal behavior of the gas and solid phases and the description of both the burning particle and the surrounding gas, under a heterogeneous or pseudo-continuous assumption. Criteria for choosing one model instead of others are also considered, depending on the case. The so-called Intrinsic Reactivity Models are described in detail for evaluating the pertinence of their simulated results. The use of CFD to build a simulation scheme of the solid combustion process at local scale is also presented and discussed.


A complete description of the solid fuel burning process is given, along with useful information concerning the evolution of different variables, such as particle internal temperature that governs the reaction rate and gas composition.


This comparative analysis gives a strong basis to select the appropriate modeling approach. Finally, recommendations are proposed for model application and future development.


Solid fuels combustion Clean operation Fluidized bed Local scale Model classification 

List of symbols


Biot number, dimensionless


Specific heat capacity (J/kg K)


Molar concentration (kmol/m3)


Diameter (m)


Diffusivity (m2/s)


Particle emissivity


Activation energy (J/kmol)


Enthalpy (J)


Heat transfer coefficient (particle in bed) (W/m2 K)


Heat transfer coefficient (particle in gas) (W/m2 K)


Solid component j


Mass transfer coefficient between particle and its surrounding (m/s)


Number of chemical reactions


Number of components


Number of species


Radius (m)


Distance from particle center (m)


Spherical coordinate


Particle external radius (m)


Gas law constant (8.315 J/kg mol)


Reaction rate of chemical reaction i (kg/m3 s)


Area (m2)


Specific surface area (m2/m3)


Time (s)


Temperature (K)


Temperature at particle surface (K)


Gas velocity (m/s)


Superficial gas velocity (m/s)




Conversion degree of solid or carbon


Solid component mass fraction


Axis of cylinder


Species mass fraction

Greek letters


Stoichiometric coefficient


Stoichiometric coefficient


Reaction enthalpy (J/kg)


Temperature difference (K)




Particle tortuosity


Thermal conductivity (W/m K)


Density (kg/m3)


Stephan–Boltzmann constant (5.67 × 10−8 W/m2 K4)


Overall source term due to chemical reaction, for energy


Overall source term due to chemical reaction, for mass


Adjustable parameter in Eq. (13)

Grade operator







Bed, bulk










Combustion reaction


Species or component j










External surface of the solid









Number of species





Asymptotic consumption


Artificial neural network


Computational fluid dynamics


Distributed activation energy


Discrete element method


Fluidized bed


Fluidized bed combustor


General case


Global combustion


Heavy metal


Heterogeneous shrinking core


Intrinsic reactive


Intrinsic reactivity general case


Large eddy simulation


Left hand side


Multi layer perceptron


Municipal solid waste


Residue derived fuel


Right hand side


Quasi stationary state


Poly vinyl chloride


Semi-implicit method for pressure-linked equations


Uniform conversion


User defined function



This study was developed in the CONICET (MINCyT)—CNRS Argentine—French collaboration agreement (SYNSOLGAS PROJECT). G. D. Mazza and J. M. Soria are Research Members of CONICET (Argentina). It was supported by the SOLSTICE Laboratory of Excellence of the French “Investments for the future” programme managed by the National Agency for Research under contract ANR-10-LABX-22-01.


  1. 1.
    Falcoz, Q., Liu, J., Gauthier, D., Flamant, G., Abanades, S.: Heavy metal vaporization in fluidized bed combustion of solid waste and coal. In: Proceedings of the XIIIth International Conference on Fluid, pp. 559–566 (2010)Google Scholar
  2. 2.
    Bin, Y., Yang, L., Sliwinski, V., Sharifi, J.: Swithenbank, Dynamic behaviour of sewage sludge incineration in a large-scale bubbling fluidised bed in relation to feeding-rate variations. Fuel 87, 1552–1563 (2008)CrossRefGoogle Scholar
  3. 3.
    Van Caneghem, J., Brems, A., Lievens, P., Block, C., Billen, P., Vermeulen, I., et al.: Fluidized bed waste incinerators: design, operational and environmental issues. Prog. Energy Combust. Sci. 38, 551–582 (2012)CrossRefGoogle Scholar
  4. 4.
    Yang, W.-C.: Handbook of Fluidization and Fluid–Particle Systems. M. Dekker, New York (2003)CrossRefGoogle Scholar
  5. 5.
    Basu, P.: Combustion and Gasification in Fluidized Beds. Taylor and Francis Group, LLC, London (2006)CrossRefGoogle Scholar
  6. 6.
    Smith, I.W.: The combustion rates of coal chars: a review. Symp. Combust. 19, 1045–1065 (1982)CrossRefGoogle Scholar
  7. 7.
    Van de Velden, M., Dewil, R., Baeyens, J., Josson, L., Lanssens, P.: The distribution of heavy metals during fluidized bed combustion of sludge (FBSC). J. Hazard. Mater. 151, 96–102 (2008)CrossRefGoogle Scholar
  8. 8.
    Williams, A., Pourkashanian, M., Jones, J.M.: The combustion of coal and some other solid fuels. Proc. Combust. Inst. 28, 2141–2162 (2000)CrossRefGoogle Scholar
  9. 9.
    Manovic, V., Komatina, M., Oka, S.: Modeling the temperature in coal char particle during fluidized bed combustion. Fuel 87, 905–914 (2008)CrossRefGoogle Scholar
  10. 10.
    Smolders, K., Baeyens, J.: Thermal degradation of PMMA in fluidised beds. Waste Manag 24, 849–857 (2004)CrossRefGoogle Scholar
  11. 11.
    Van de Velden, M., Baeyens, J., Boukis, I.: Modeling CFB biomass pyrolysis reactors. Biomass Bioenergy 32, 128–139 (2008)CrossRefGoogle Scholar
  12. 12.
    Van de Velden, M., Baeyens, J., Dougan, B., McMurdo, A.: Investigation of operational parameters for an industrial CFB combustor of coal, biomass and sludge. China Particuol. 5, 247–254 (2007)CrossRefGoogle Scholar
  13. 13.
    Baeyens, J., Van Puyvelde, F.: Fluidized bed incineration of sewage sludge. J. Hazard. Mater. 37, 179–190 (1994)CrossRefGoogle Scholar
  14. 14.
    Vandecasteele, C., Wauters, G., Arickx, S., Jaspers, M., Van Gerven, T.: Integrated municipal solid waste treatment using a grate furnace incinerator: the Indaver case. Waste Manag 27, 1366–1375 (2007)CrossRefGoogle Scholar
  15. 15.
    Borodulya, V., Dikalenko, V., Palchonok, G., Stanchitis, L.: Fluidized bed combustion of solid organic wastes and low-grade coals: research and modeling. In: Proceedings of the 13th International Conference on FBC, pp. 935–942 (1995)Google Scholar
  16. 16.
    Hofmann, H.: Progress in modelling of catalytic fixed-bed reactors. Ger. Chem. Eng. 2, 258–267 (1979)Google Scholar
  17. 17.
    Froment, G.F., Bischoff, K.B.: Chemical Reactor Analysis and Design, 2nd edn. Wiley, New York (1990)Google Scholar
  18. 18.
    LaNauze, R.: Fundamentals of coal combustion. In: Davidson, J.F., Clift, R., Harrison, D. (eds.) Fluidization, 2nd ed., pp. 631–674. Academic Press, London (1985)Google Scholar
  19. 19.
    Puig-Arnavat, M., Bruno, J.C., Coronas, A.: Review and analysis of biomass gasification models. Renew. Sustain. Energy Rev. 14, 2841–2851 (2010)CrossRefGoogle Scholar
  20. 20.
    van de Weerdhof, M. W.: Modeling the Pyrolysis Process Of Biomass Particles. Master’s Thesis, Department of Mechanical Engineering, Eindhoven University of Technology, The Netherlands (2010)Google Scholar
  21. 21.
    Di Blasi, C.: Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34, 47–90 (2008)CrossRefGoogle Scholar
  22. 22.
    Bridgwater, A.V.: Catalysis in thermal biomass conversion. Appl. Catal. A 116, 5–47 (1994)CrossRefGoogle Scholar
  23. 23.
    Davidson, J., Harrison, D.: Fluidised Particles. Cambridge University Press, New York (1963)Google Scholar
  24. 24.
    LaFanechere, L., Basu, P., Jestin, L.: Use of an expert system to study the effect of steam parameters on the size and configuration of circulating fluidized bed boilers. J. Eng. Gas Turbines Power 120, 861 (1998)CrossRefGoogle Scholar
  25. 25.
    Mahmoudi, S., Baeyens, J., Seville, J.P.K.: NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass Bioenergy 34, 1393–1409 (2010)CrossRefGoogle Scholar
  26. 26.
    Makansi, J.: Fuel type, preparation emerge as critical to FBC design. Power 134, 41–44 (1990)Google Scholar
  27. 27.
    Makansi, J.: Can fluid-bed take on pc units in the 250- to 400-MW range? Power 137, 45–50 (1993)Google Scholar
  28. 28.
    Jones, C.: O&M experience underscores maturity of CFB technology. Power 139, 46–55 (1995)Google Scholar
  29. 29.
    Ménard, Y., Asthana, A., Patisson, F., Sessiecq, P., Ablitzer, D.: Thermodynamic study of heavy metals behaviour during municipal waste incineration. Process Saf. Environ. Prot. 84, 290–296 (2006)CrossRefGoogle Scholar
  30. 30.
    Mazza, G., Falcoz, Q., Gauthier, D., Flamant, G.: A particulate model of solid waste incineration in a fluidized bed combining combustion and heavy metal vaporization. Combust. Flame 156, 2084–2092 (2009)CrossRefGoogle Scholar
  31. 31.
    Mazza, G., Falcoz, Q., Soria, J., Gauthier, D., Flamant, G.: Nonisothermal particle modeling of municipal solid waste combustion with heavy metal vaporization. Combust. Flame 157, 2306–2317 (2010)CrossRefGoogle Scholar
  32. 32.
    Soria, J., Gauthier, D., Falcoz, Q., Flamant, G., Mazza, G.: Local CFD kinetic model of cadmium vaporization during fluid bed incineration of municipal solid waste. J. Hazard. Mater. 248–249, 276–284 (2013)CrossRefGoogle Scholar
  33. 33.
    Moghtaderi, B.: Pyrolysis of char forming solid fuels: a critical review of the mathematical modelling techinques. In: Proceedings of the 5th AOSFST, pp. 55–82 (2001)Google Scholar
  34. 34.
    Grammelis, P., Basinas, P., Malliopoulou, A., Sakellaropoulos, G.: Pyrolysis kinetics and combustion characteristics of waste recovered fuels. Fuel 88, 195–205 (2009)CrossRefGoogle Scholar
  35. 35.
    Sommariva, S., Maffei, T., Migliavacca, G., Faravelli, T., Ranzi, E.: A predictive multi-step kinetic model of coal devolatilization. Fuel 89, 318–328 (2010)CrossRefGoogle Scholar
  36. 36.
    Cuoci, A., Faravelli, T., Frassoldati, A.: Mathematical modelling of gasification and combustion of solid fuels and wastes. Chem. Eng. Trans. 18, 989–994 (2009)Google Scholar
  37. 37.
    Arena, U.: Process and technological aspects of municipal solid waste gasification. A review. Waste Manag 32, 625–639 (2012)CrossRefGoogle Scholar
  38. 38.
    Lautenberger, C., Fernandez-Pello, C.: A generalized pyrolysis model for combustible solids. In: Proceedings of the 5th International Seminar on Fire and Explosion Hazards, Edinburgh, UK, pp. 92–114 (2007)Google Scholar
  39. 39.
    Williams, A., Backreedy, R., Habib, R., Jones, J.M., Pourkashanian, M.: Modelling coal combustion: the current position. Fuel 81, 605–618 (2002)CrossRefGoogle Scholar
  40. 40.
    Solomon, P.R., Hamblen, D.G., Carangelo, R.M., Serio, M.A., Deshpande, G.V.: General model of coal devolatilization. Energy Fuels 2, 405–422 (1988)CrossRefGoogle Scholar
  41. 41.
    Niksa, S., Kerstein, A.: FLASHCHAIN theory for rapid coal devolatilization kinetics. 1. Formulation. Energy Fuels 5, 647–665 (1991)CrossRefGoogle Scholar
  42. 42.
    Fletcher, T., Kerstein, A., Pugmire, R.J., Solum, M., Grant, D.M.: A Chemical Percolation Model for Devolatilization: Summary. Bringham Young University (1992)Google Scholar
  43. 43.
    Pitt, G.: The kinetics of the evolution of volatile products from coal. Fuel 41, 267–274 (1962)Google Scholar
  44. 44.
    Solomon, P., Hamblen, D.: Finding order in coal pyrolysis kinetics. Prog. Energy Combust. Sci. 9, 323–361 (1983)CrossRefGoogle Scholar
  45. 45.
    Please, C.P., McGuinness, M.J., McElwain, D.L.S.: Approximations to the distributed activation energy model for the pyrolysis of coal. Combust. Flame 133, 107–117 (2003)CrossRefGoogle Scholar
  46. 46.
    Paea, S.: Coal Pyrolysis Distribution. Victoria University of Wellington, Wellington (2008)Google Scholar
  47. 47.
    Skodras, G., Grammelis, P., Basinas, P., Kakaras, E., Sakellaropoulos, G.: Pyrolysis and combustion characteristics of biomass and waste-derived feedstock. Ind. Eng. Chem. Res. 45, 3791–3799 (2006)CrossRefGoogle Scholar
  48. 48.
    Dvornikov, N.A.: Equilibrium and kinetic modeling of high-pressure pyrolysis and oxidation of hydrocarbons. Combust. Explos. Shock Waves 35, 230–238 (1999)CrossRefGoogle Scholar
  49. 49.
    Basu, P.: Biomass Gasification and Pyrolysis. Practical Design. Elsevier, Burlington (2010)Google Scholar
  50. 50.
    Yang, H., Yan, R., Liang, D., Chen, H., Zheng, C.: Pyrolysis of palm oil wastes for biofuel production. Asian J. Energy Environ. 7, 315–323 (2006)Google Scholar
  51. 51.
    Rapagnà, S., Latif, A.: Steam gasification of almond shells in a fluidised bed reactor the influence of temperature and particle size on product yield and distribution. Biomass Bioenergy 12, 281–288 (1997)CrossRefGoogle Scholar
  52. 52.
    Gómez-Barea, A., Arjona, R., Ollero, P.: Pilot-plant gasification of olive stone: a technical assessment. Energy Fuels 19, 598–605 (2005)CrossRefGoogle Scholar
  53. 53.
    Paviet, F., Chazarenc, F., Tazerout, M.: Thermo chemical equilibrium modelling of a biomass gasifying process using ASPEN PLUS. Int. J. Chem. React. Eng. 7, 1–18 (2009)Google Scholar
  54. 54.
    Mathieu, P., Dubuisson, R.: Performance analysis of a biomass gasifier. Energy Convers. Manag. 43, 1291–1299 (2002)CrossRefGoogle Scholar
  55. 55.
    Mansaray, A.K.G., Al-Taweel, A.M.: Mathematical modeling of a fluidized bed rice husk gasifier: part I—model development. Energy Sources 22, 83–98 (2000)CrossRefGoogle Scholar
  56. 56.
    Mansaray, K., Ghaly, A., Al-Taweel, A., Ugursal, V., Hamdullahpur, F.: Mathematical modeling of a fluidized bed rice husk gasifier: part III—model verification. Energy Sources 22, 281–296 (2000)CrossRefGoogle Scholar
  57. 57.
    Doherty, W., Reynolds, A., Kennedy, D.: The effect of air preheating in a biomass CFB gasifier using ASPEN plus simulation. Biomass Bioenergy 33, 1158–1167 (2009)CrossRefGoogle Scholar
  58. 58.
    Li, X., Grace, J., Watkinson, A., Lim, C., Ergüdenler, A.: Equilibrium modeling of gasification: a free energy minimization approach and its application to a circulating fluidized bed coal gasifier. Fuel 80, 195–207 (2001)CrossRefGoogle Scholar
  59. 59.
    de Souza, M.B., Couceiro, L., Barreto, A.G., Quitete, C.P. B.: Neural network based modeling and operational optimization of biomass gasification processes. In: Gasification for Practical Applications, InTech, pp. 297–312 (2012)Google Scholar
  60. 60.
    Xiao, G., Ni, M., Chi, Y., Jin, B., Xiao, R., Zhong, Z., et al.: Gasification characteristics of MSW and an ANN prediction model. Waste Manag 29, 240–244 (2009)CrossRefGoogle Scholar
  61. 61.
    Guo, B., Li, D., Cheng, C., Lü, Z., Shen, Y.: Simulation of biomass gasification with a hybrid neural network model. Bioresour. Technol. 76, 77–83 (2001)CrossRefGoogle Scholar
  62. 62.
    Singer, S.L.: Gasification and Combustion Modeling for Porous Char Particles. Massachusetts Institute of Technology, Cambridge (2012)Google Scholar
  63. 63.
    Szekely, J., Evans, J., Sohn, H.Y.: Gas–Solid Reactions. Academic Press, London (1976)Google Scholar
  64. 64.
    Wicke, E.: Contributions to the combustion mechanism of carbon. Symp. Combust. 5, 245–252 (1955)CrossRefGoogle Scholar
  65. 65.
    Walker, P.L., Rusinko, F., Austin, L.G.: Gas reactions of carbon. Adv. Catal. 11, 133–221 (1959)Google Scholar
  66. 66.
    Avedesian, M., Davidson, J.: Combustion of carbon particles in a fluidised bed. Trans. Inst. Chem. Eng. 51, 121–131 (1973)Google Scholar
  67. 67.
    Kunii, D., Levenspiel, O.: Fluidization Engineering. Butterworth Publishers, Stoneham, MA (1991)Google Scholar
  68. 68.
    Cooper, J., Hallett, W.L.H.: A numerical model for packed-bed combustion of char particles. Chem. Eng. Sci. 55, 4451–4460 (2000)CrossRefGoogle Scholar
  69. 69.
    Sriramulu, S., Sane, S., Agarwal, P., Mathews, T.: Mathematical modelling of fluidized bed combustion. Fuel 75, 1351–1362 (1996)CrossRefGoogle Scholar
  70. 70.
    Dacombe, P., Pourkashanian, M., Williams, A., Yap, A.: Combustion-induced fragmentation behavior of isolated coal particles. Fuel 78, 1847–1857 (1999)CrossRefGoogle Scholar
  71. 71.
    Mermoud, F., Golfier, F., Salvador, S., Van de Steene, L., Dirion, J.L.: Experimental and numerical study of steam gasification of a single charcoal particle. Combust. Flame 145, 59–79 (2006)CrossRefGoogle Scholar
  72. 72.
    Hastaoglu, M.A., Hassam, M.S.: Application of a general gas–solid reaction model to flash pyrolysis of wood in a circulating fluidized bed. Fuel 74, 697–703 (1995)CrossRefGoogle Scholar
  73. 73.
    Hastaoglu, M., Berruti, F.: A gas–solid reaction model for flash wood pyrolysis. Fuel 68, 1408–1415 (1989)CrossRefGoogle Scholar
  74. 74.
    Veras, C.G., Saastamoinen, J., Carvalho, J., Jr., Aho, M.: Overlapping of the devolatilization and char combustion stages in the burning of coal particles. Combust. Flame 116, 567–579 (1999)CrossRefGoogle Scholar
  75. 75.
    Lee, J.: Transient numerical modeling of carbon particle ignition and oxidation. Combust. Flame 101, 387–398 (1995)CrossRefGoogle Scholar
  76. 76.
    Bradley, D., Dixon-Lewis, G., El-din Habik, S., Mushi, E.M.J.: The oxidation of graphite powder in flame reaction zones. Symp. Combust. 20, 931–940 (1985)CrossRefGoogle Scholar
  77. 77.
    Kee, R., Warnatsz, J., Miller, J.: Fortran computer-code package for the evaluation of gas-phase viscosities, conductivities, and diffusion coefficients [CHEMKIN] (1983)Google Scholar
  78. 78.
    Stull, D., Prophet, H.: JANAF Thermochemical Tables, pp. 1–1139 (1971)Google Scholar
  79. 79.
    Porteiro, J., Granada, E., Collazo, J., Patiño, D., Morán, J.C.: A model for the combustion of large particles of densified wood. Energy Fuels 21, 3151–3159 (2007)CrossRefGoogle Scholar
  80. 80.
    Thunman, H., Leckner, B., Niklasson, F., Johnsson, F.: Combustion of wood particles—a particle model for Eulerian calculations. Combust. Flame 129, 30–46 (2002)CrossRefGoogle Scholar
  81. 81.
    Peters, B., Bruch, C.: A flexible and stable numerical method for simulating the thermal decomposition of wood particles. Chemosphere 42, 481–490 (2001)CrossRefGoogle Scholar
  82. 82.
    Tabarés, J.L.M., Granada, E., Moran, J., Porteiro, J., Murillo, S., González, L.M.L.: Combustion behavior of spanish lignocellulosic briquettes, energy sources. Energy Sources Part A Recover. Util. Environ. Eff. 28, 501–515 (2006)CrossRefGoogle Scholar
  83. 83.
    Lu, H., Robert, W., Peirce, G., Ripa, B., Baxter, L.L.: Comprehensive study of biomass particle combustion. Energy Fuels 22, 2826–2839 (2008)CrossRefGoogle Scholar
  84. 84.
    Haseli, Y., van Oijen, J.A., de Goey, L.P.H.: A detailed one-dimensional model of combustion of a woody biomass particle. Bioresour. Technol. 102, 9772–9782 (2011)CrossRefGoogle Scholar
  85. 85.
    Manović, V., Grubor, B., Ilić, M.: Sulfur self-retention in ash a grain model approach. Therm. Sci. 6, 29–46 (2002)CrossRefGoogle Scholar
  86. 86.
    Manovic, V., Grubor, B., Loncarevic, D.: Modeling of inherent capture in coal particles during combustion in fluidized bed. Chem. Eng. Sci. 61, 1676–1685 (2006)CrossRefGoogle Scholar
  87. 87.
    Grubor, B., Manovic, V., Oka, S.: An experimental and modeling study of the contribution of coal ash to SO2 capture in fluidized bed combustion. Chem. Eng. J. 96, 157–169 (2003)CrossRefGoogle Scholar
  88. 88.
    Ilić, M., Oka, S., Grubor, B.: Analysis of the dynamic behavior of a burning porous char particle. Therm. Sci. 2, 61–73 (1998)Google Scholar
  89. 89.
    Ilić, M., Grubor, B., Manović, V.: Sulfur retention by ash during coal combustion. Part I. A model of char particle combustion. J. Serbian Chem. Soc. 68, 137–145 (2003)CrossRefGoogle Scholar
  90. 90.
    Bhatia, S., Perlmutter, D.: A rondom pore model for fluid–solid reactions: 1. isothermal, kinetic control. AIChE J. 26, 379–386 (1980)CrossRefGoogle Scholar
  91. 91.
    Arthur, J.: Reactions between carbon and oxygen. Trans. Faraday Soc. 47, 164–178 (1951)CrossRefGoogle Scholar
  92. 92.
    Patankar, S.: Numerical Heat Transfer and Fluid Flow. Taylor and Francis Group, LLC, London (1980)zbMATHGoogle Scholar
  93. 93.
    Zhou, H., Flamant, G., Gauthier, D.: DEM-LES simulation of coal combustion in a bubbling fluidized bed part II: coal combustion at the particle level. Chem. Eng. Sci. 59, 4205–4215 (2004)CrossRefGoogle Scholar
  94. 94.
    Canò, G., Salatino, P., Scala, F.: A single particle model of the fluidized bed combustion of a char particle with a coherent ash skeleton: application to granulated sewage sludge. Fuel Process. Technol. 88, 577–584 (2007)CrossRefGoogle Scholar
  95. 95.
    Dennis, J.S., Lambert, R.J., Milne, A.J., Scott, S.A., Hayhurst, A.N.: The kinetics of combustion of chars derived from sewage sludge. Fuel 84, 117–126 (2005)CrossRefGoogle Scholar
  96. 96.
    Chen, C., Kojima, T.: Single char particle combustion at moderate temperature: effects of ash. Fuel Process. Technol. 47, 215–232 (1996)CrossRefGoogle Scholar
  97. 97.
    Bhat, A., Ram Bheemarasetti, J., Rajeswara Rao, T.: Kinetics of rice husk char gasification. Energy Convers. Manag. 42, 2061–2069 (2001)CrossRefGoogle Scholar
  98. 98.
    Yasyerli, N., Dogu, T., Dogu, G., Ar, I.: Deactivation model for textural effects of kinetics of gas–solid noncatalytic reactions “char gasification with CO2”. Chem. Eng. Sci. 51, 2523–2528 (1996)CrossRefGoogle Scholar
  99. 99.
    Gómez-Barea, A.: Modelado de los efectos difusionales en la gasificación de partículas de carbonizado de biomasa. University of Seville, Seville (2006)Google Scholar
  100. 100.
    Gómez-Barea, A., Ollero, P.: An approximate method for solving gas–solid non-catalytic reactions. Chem. Eng. Sci. 61, 3725–3735 (2006)CrossRefGoogle Scholar
  101. 101.
    Wang, Y., Yan, L.: CFD studies on biomass thermochemical conversion. Int. J. Mol. Sci. 9, 1108–1130 (2008)CrossRefGoogle Scholar
  102. 102.
    J. Macphee, M. Sellier, M. Jermy, E. Tadulan, CFD modelling of pulverized coal combustion in a rotary lime kiln. In: Seventh International Conference CFD Seventh International Conference on CFD in the Minerals and Process Industries, pp. 1–6 (2009)Google Scholar
  103. 103.
    Yin, C., Kær, S., Rosendahl, L., Hvis, S.: Modeling of pulverized coal and biomass co-firing in a 150 KW swirling-stabilized burner and experimental validation. Proc. Int. Conf. Power Eng. 09, 305–310 (2009)Google Scholar
  104. 104.
    Backreedy, R.I., Habib, R., Jones, J.M., Pourkashanian, M., Williams, A.: An extended coal combustion model. Fuel 78, 1745–1754 (1999)CrossRefGoogle Scholar
  105. 105.
    Backreedy, R.I., Fletcher, L.M., Jones, J.M., Ma, L., Pourkashanian, M., Williams, A.: Co-firing pulverised coal and biomass: a modeling approach. Proc. Combust. Inst. 30, 2955–2964 (2005)CrossRefGoogle Scholar
  106. 106.
    Geng, Y., Che, D.: An extended DEM-CFD model for char combustion in a bubbling fluidized bed combustor of inert sand. Chem. Eng. Sci. 66, 207–219 (2011)CrossRefGoogle Scholar
  107. 107.
    Stopford, P.J.: Recent applications of CFD modelling in the power generation and combustion industries. Appl. Math. Model. 26, 351–374 (2002)zbMATHCrossRefGoogle Scholar
  108. 108.
    Pallarés, J., Arauzo, I., Díez, L.I.: Numerical prediction of unburned carbon levels in large pulverized coal utility boilers. Fuel 84, 2364–2371 (2005)CrossRefGoogle Scholar
  109. 109.
    Pallarés, J., Arauzo, I., Williams, A.: Integration of CFD codes and advanced combustion models for quantitative burnout determination. Fuel 86, 2283–2290 (2007)CrossRefGoogle Scholar
  110. 110.
    Gera, D., Mathur, M.P., Freeman, M.C., Robinson, A.: Effect of large aspect ratio of biomass particles on carbon burnout in a utility boiler. Energy Fuels 16, 1523–1532 (2002)CrossRefGoogle Scholar
  111. 111.
    Yang, Y.B., Sharifi, V.N., Swithenbank, J., Ma, L., Darvell, L.I., Jones, J.M., et al.: Combustion of a single particle of biomass. Energy Fuels 22, 306–316 (2008)CrossRefGoogle Scholar
  112. 112.
    Mehrabian, R., Zahirovic, S., Scharler, R., Obernberger, I., Kleditzsch, S., Wirtz, S., et al.: A CFD model for thermal conversion of thermally thick biomass particles. Fuel Process. Technol. 95, 96–108 (2012)CrossRefGoogle Scholar
  113. 113.
    ANSYS Inc: ANSYS FLUENT User’ s Guide. ANSYS Inc, Cecil Township (2011)Google Scholar
  114. 114.
    Bruch, C., Peters, B., Nussbaumer, T.: Modelling wood combustion under fixed bed conditions. Fuel 82, 729–738 (2003)CrossRefGoogle Scholar
  115. 115.
    Li, J., Paul, M.C., Younger, P.L., Watson, I., Hossain, M., Welch, S.: Characterization of biomass combustion at high temperatures based on an upgraded single particle model. Appl. Energy 156, 749–755 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Germán D. Mazza
    • 1
  • José M. Soria
    • 1
  • Daniel Gauthier
    • 2
  • Andrés Reyes Urrutia
    • 1
  • Mariana Zambon
    • 1
  • Gilles Flamant
    • 2
    Email author
  1. 1.Instituto de Investigación y Desarrollo en Ingeniería de ProcesosBiotecnología y Energías Alternativas (PROBIEN, CONICET-UNCo)NeuquénArgentina
  2. 2.Laboratoire Procédés, Matériaux et Énergie Solaire (CNRS-PROMES)Font-RomeuFrance

Personalised recommendations