Waste and Biomass Valorization

, Volume 7, Issue 2, pp 201–235 | Cite as

Biochar as an Exceptional Bioresource for Energy, Agronomy, Carbon Sequestration, Activated Carbon and Specialty Materials

  • Sonil Nanda
  • Ajay K. Dalai
  • Franco Berruti
  • Janusz A. Kozinski


Biofuels and biomaterials are gaining increased attention because of their ecofriendly nature and renewable precursors. Biochar is a recalcitrant carbonaceous product obtained from pyrolysis of biomass and other biogenic wastes. Biochar has found many notable applications in diverse areas because of its versatile physicochemical properties. Some of the promising biochar applications discussed in this paper include char gasification and combustion for energy production, soil remediation, carbon sequestration, catalysis, as well as development of activated carbon and specialty materials with biomedical and industrial uses. The pyrolysis temperature and heating rates are the limiting factors that determine the biochar properties such as fixed carbon, volatile matter, mineral phases, surface area, porosity and pore size distribution, alkalinity, electrical conductivity, cation-exchange capacity, etc. A broad investigation of these properties determining biochar application is rare in literature. With this objective, this paper comprehensively reviews the evolution of biochar from several lignocellulosic biomasses influenced by pyrolysis temperature and heating rate. Lower pyrolysis temperatures produce biochar with higher yields, and greater levels of volatiles, electrical conductivity and cation-exchange capacity. Conversely, higher temperatures generate biochar with a greater extent of aromatic carbon, alkalinity and surface area with microporosity. Nevertheless, this coherent review summarizes the valorization potentials of biochar for various environmental, industrial and biomedical applications.

Graphical Abstract


Biochar Pyrolysis Gasification Soil amendment Carbon sequestration Activated carbon 



The authors would like to thank Natural Sciences and Engineering Research Council of Canada (NSERC) and Canada Research Chair (CRC) program for funding this bioenergy research.


  1. 1.
    International Energy Agency (IEA): World Energy Outlook 2007: China and India Insights. IEA, Paris (2007)Google Scholar
  2. 2.
    Wu, X., McLaren, J., Madl, R., Wang, D.: Biofuels from lignocellulosic biomass. In: Singh, O.V., Harvey, S.P. (eds.) Sustainable Biotechnology: Sources of Renewable Energy, pp. 19–41. Springer, Netherlands (2010)CrossRefGoogle Scholar
  3. 3.
    Shafiee, S., Topal, E.: When will fossil fuel reserves be diminished? Energy Policy 37, 181–189 (2009)CrossRefGoogle Scholar
  4. 4.
    Pu, Y., Zhang, D., Singh, P.M., Ragauskas, A.J.: The new forestry biofuels sector. Biofuels Bioprod. Biorefin. 2, 58–73 (2008)CrossRefGoogle Scholar
  5. 5.
    Balat, M.: Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers. Manag. 52, 858–875 (2011)CrossRefGoogle Scholar
  6. 6.
    Nanda, S., Mohammad, J., Reddy, S.N., Kozinski, J.A., Dalai, A.K.: Pathways of lignocellulosic biomass conversion to renewable fuels. Biomass Convers. Biorefin. 4, 157–191 (2014)CrossRefGoogle Scholar
  7. 7.
    Barnabe, D., Bucchi, R., Rispoli, A., Chiavetta, C., Porta, P.L., Bianchi, C.L., Pirola, C., Boffito, D.C., Carvoli, G.: Land use change impacts of biofuels: a methodology to evaluate biofuel sustainability. In: Fang, Z. (ed.) Biofuels—Economy, Environment and Sustainability, pp. 3–37. InTech, Rijeka (2013)Google Scholar
  8. 8.
    Briens, C., Piskorz, J., Berruti, F.: Biomass valorization for fuel and chemicals production—a review. Int. J. Chem. React. Eng. 6, 1542–6580 (2008)Google Scholar
  9. 9.
    Lehmann, J.: Bio-energy in the black. Front. Ecol. Environ. 5, 381–387 (2007)CrossRefGoogle Scholar
  10. 10.
    Sohi, S.P., Krull, E., Lopez-Capel, E., Bol, R.: A review of biochar and its use and function in soil. In: Sparks, D.L. (ed.) Advances in Agronomy, pp. 47–82. Academic Press, Burlington (2010)Google Scholar
  11. 11.
    Mortensen, P.M., Grunwaldt, J.D., Jensen, P.A., Knudsen, K.G., Jensen, A.D.: A review of catalytic upgrading of bio-oil to engine fuels. Appl. Catal. A Gen. 407, 1–19 (2011)CrossRefGoogle Scholar
  12. 12.
    Marousek, J.: Significant breakthrough in biochar cost reduction. Clean Technol. Environ. Policy 16, 1821–1825 (2014)CrossRefGoogle Scholar
  13. 13.
    Nanda, S., Azargohar, R., Kozinski, J.A., Dalai, A.K.: Characteristic studies on the pyrolysis products from hydrolyzed Canadian lignocellulosic feedstocks. Bioenergy Res. 7, 174–191 (2014)CrossRefGoogle Scholar
  14. 14.
    Azargohar, R., Nanda, S., Kozinski, J.A., Dalai, A.K., Sutarto, R.: Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass. Fuel 125, 90–100 (2014)CrossRefGoogle Scholar
  15. 15.
    Azargohar, R., Nanda, S., Rao, B.V.S.K., Dalai, A.K.: Slow pyrolysis of deoiled Canola meal: product yields and characterization. Energy Fuels 27, 5268–5279 (2013)Google Scholar
  16. 16.
    Mohanty, P., Nanda, S., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K.: Evaluation of the physiochemical development of biochars obtained from pyrolysis of wheat straw, timothy grass and pinewood: effects of heating rate. J. Anal. Appl. Pyrolysis 104, 485–493 (2013)CrossRefGoogle Scholar
  17. 17.
    Freel, B.A., Graham, R.G.: Method and apparatus for a circulating bed transport fast pyrolysis reactor system. United States Patent 5,792,340 (1998)Google Scholar
  18. 18.
    Ekstrom, C., Lindman, N., Pettersson, R.: Catalytic conversion of tars, carbon black and methane from pyrolysis/gasification of biomass. In: Overend, R.P., Milne, T.A., Mudge, L.K. (eds.) Fundamentals of Thermochemical Biomass Conversion, pp. 601–618. Elsevier Applied Science Publishers, Springer, Netherlands (1985)CrossRefGoogle Scholar
  19. 19.
    Lira, C.S., Berruti, F.M., Palmisano, P., Berruti, F., Briens, C., Pecora, A.A.B.: Fast pyrolysis of Amazon tucuma (Astrocaryum aculeatum) seeds in a bubbling fluidized bed reactor. J. Anal. Appl. Pyrolysis 99, 23–31 (2013)CrossRefGoogle Scholar
  20. 20.
    Busse, M.D., Cochran, P.H., Hopkins, W.E., Johnson, W.H., Riegel, G.M., Fiddler, G.O., Ratcliff, A.W., Shestak, C.J.: Developing resilient ponderosa pine forests with mechanical thinning and prescribed fire in central Oregon’s pumice region. Can. J. For. Res. 39, 1171–1185 (2009)CrossRefGoogle Scholar
  21. 21.
    Perlack, R.D., Wright, L.L., Turhollow, A.F., Graham, R.L., Stokes, B.J., Erbach, D.C.: Biomass as Feedstock for a Bioenergy and Bioproducts Industry: The Technical Feasibility of a Billion-Ton Annual Supply, Technical Report. Oak Ridge National Laboratory, Oak Ridge (2005)Google Scholar
  22. 22.
    Gan, J., Smith, C.T.: Availability of logging residues and potential for electricity production and carbon displacement in the USA. Biomass Bioenergy 30, 1011–1020 (2006)CrossRefGoogle Scholar
  23. 23.
    Badger, P.C., Fransham, P.: Use of mobile fast pyrolysis plants to densify biomass and reduce biomass handling costs—a preliminary assessment. Biomass Bioenergy 30, 321–325 (2006)CrossRefGoogle Scholar
  24. 24.
    Leber, J.: Biochar: one way to deal with more fire-prone forests. The New York Times: Energy and Environment. www.nytimes.com/cwire/2009/05/01/01climatewire-biochar-one-way-to-deal-with-more-fire-prone-12208.html (2009). Accessed 2 Sept 2014
  25. 25.
    Mohan, D., Pittman Jr, C.U., Steele, P.H.: Pyrolysis of wood/biomass for bio-oil: a critical review. Energy Fuels 20, 848–889 (2006)CrossRefGoogle Scholar
  26. 26.
    Samanya, J., Hornung, A., Apfelbacher, A., Vale, P.: Characteristics of the upper phase of bio-oil obtained from co-pyrolysis of sewage sludge with wood, rapeseed and straw. J. Anal. Appl. Pyrolysis 94, 120–125 (2012)CrossRefGoogle Scholar
  27. 27.
    Huber, G.W., Iborra, S., Corma, A.: Synthesis of transportation fuels from biomass: chemistry, catalysts, and engineering. Chem. Rev. 106, 4044–4098 (2006)CrossRefGoogle Scholar
  28. 28.
    Maschio, G., Koufopanos, C., Lucchesi, A.: Pyrolysis, a promising route for biomass utilization. Bioresour. Technol. 42, 219–231 (1992)CrossRefGoogle Scholar
  29. 29.
    Bridgwater, A.V.: Principles and practice of biomass fast pyrolysis processes for liquids. J. Anal. Appl. Pyrolysis 51, 3–22 (1999)CrossRefGoogle Scholar
  30. 30.
    Wagenaar, B.M., Prins, W., van Swaaij, W.P.M.: Flash pyrolysis kinetics of pine wood. Fuel Process. Technol. 36, 291–298 (1993)CrossRefGoogle Scholar
  31. 31.
    Samolada, M.C., Vasalos, I.A.: A kinetic approach to the flash pyrolysis of biomass in a fluidized bed reactor. Fuel 70, 883–889 (1991)CrossRefGoogle Scholar
  32. 32.
    Ahmad, M., Rajapaksha, A.U., Lim, J.E., Zhang, M., Bolan, N., Mohan, D., Vithanage, M., Lee, S.S., Ok, Y.S.: Biochar as a sorbent for contaminant management in soil and water: a review. Chemosphere 99, 19–33 (2014)CrossRefGoogle Scholar
  33. 33.
    Bridgwater, A.V., Peacocke, G.V.C.: Fast pyrolysis processes for biomass. Renew. Sustain. Energy Rev. 4, 1–73 (2000)CrossRefGoogle Scholar
  34. 34.
    Kanaujia, P.K., Sharma, Y.K., Garg, M.O., Tripathi, D., Singh, R.: Review of analytical strategies in the production and upgrading of bio-oils derived from lignocellulosic biomass. J. Anal. Appl. Pyrolysis 105, 55–74 (2014)CrossRefGoogle Scholar
  35. 35.
    Luo, Z., Wang, S., Cen, K.: A model of wood flash pyrolysis in fluidized bed reactor. Renew. Energy 30, 377–392 (2005)CrossRefGoogle Scholar
  36. 36.
    Titiladunayo, I.F., McDonald, A.G., Fapetu, O.P.: Effect of temperature on biochar product yield from selected lignocellulosic biomass in a pyrolysis process. Waste Biomass Valoriz 3, 311–318 (2012)CrossRefGoogle Scholar
  37. 37.
    Demiral, I., Kul, C.S.: Pyrolysis of apricot kernel shell in a fixed-bed reactor: characterization of bio-oil and char. J. Anal. Appl. Pyrolysis 107, 17–24 (2014)CrossRefGoogle Scholar
  38. 38.
    Scott, D.S., Piskorz, J.: The continuous flash pyrolysis of biomass. Can. J. Chem. Eng. 62, 404–412 (1984)CrossRefGoogle Scholar
  39. 39.
    Uchimiya, M., Wartelle, L.H., Klasson, K.T., Fortier, C.A., Lima, I.M.: Influence of pyrolysis temperature on biochar property and function as a heavy metal sorbent in soil. J. Agric. Food Chem. 59, 2501–2510 (2011)CrossRefGoogle Scholar
  40. 40.
    Keiluweit, M., Nico, P.S., Johnson, M.G., Kleber, M.: Dynamic molecular structure of plant-derived black carbon (biochar). Environ. Sci. Technol. 44, 1247–1253 (2010)CrossRefGoogle Scholar
  41. 41.
    Xu, R., Ferrante, L., Briens, C., Berruti, F.: Flash pyrolysis of grape residues into biofuel in a bubbling fluid bed. J. Anal. Appl. Pyrolysis 86, 58–65 (2009)CrossRefGoogle Scholar
  42. 42.
    Horne, P.A., Williams, P.T.: Influence of temperature on the products from the flash pyrolysis of biomass. Fuel 75, 1051–1059 (1996)CrossRefGoogle Scholar
  43. 43.
    Kucuk, M.M., Demirbas, A.: Biomass conversion processes. Energy Convers. Manag. 38, 151–165 (1997)CrossRefGoogle Scholar
  44. 44.
    Chen, B., Chen, Z.: Sorption of naphthalene and 1-naphthol by biochars of orange peels with different pyrolytic temperatures. Chemosphere 76, 127–133 (2009)CrossRefGoogle Scholar
  45. 45.
    Park, H.J., Park, Y.K., Dong, J.I., Kim, J.S., Jeon, J.K., Kim, S.S., Kim, J., Song, B., Park, J., Lee, K.J.: Pyrolysis characteristics of Oriental white oak: kinetic study and fast pyrolysis in a fluidized bed with an improved reaction system. Fuel Process. Technol. 90, 186–195 (2009)CrossRefGoogle Scholar
  46. 46.
    Novak, J.M., Lima, I., Xing, B., Gaskin, J.W., Steiner, C., Das, K.C., Ahmedna, M., Rehrah, D., Watts, D.W., Busscher, W.J., Schomberg, H.: Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Ann. Environ. Sci. 3, 195–206 (2009)Google Scholar
  47. 47.
    Ahmad, M., Lee, S.S., Dou, X., Mohan, D., Sung, J.K., Yang, J.E., Ok, Y.S.: Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresour. Technol. 118, 536–544 (2012)CrossRefGoogle Scholar
  48. 48.
    Chen, B., Zhou, D., Zhu, L.: Transitional adsorption and partition on nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol. 42, 5137–5143 (2008)CrossRefGoogle Scholar
  49. 49.
    Song, W., Guo, M.: Quality variations of poultry litter biochar generated at different pyrolysis temperatures. J. Anal. Appl. Pyrolysis 94, 138–145 (2012)CrossRefGoogle Scholar
  50. 50.
    Karaosmanoglu, F., Isigigur-Ergudenler, A., Sever, A.: Biochar from the straw-stalk of rapeseed plant. Energy Fuels 14, 336–339 (2000)CrossRefGoogle Scholar
  51. 51.
    Buah, M.K., Cunliffe, A.M., Williams, P.T.: Characterization of products from the pyrolysis of municipal solid waste. Process Saf. Environ. 85, 450–457 (2007)CrossRefGoogle Scholar
  52. 52.
    Fu, P., Hu, S., Xiang, J., Sun, L., Su, S., Wang, J.: Evaluation of the porous structure development of chars from pyrolysis of rice straw: effects of pyrolysis temperature and heating rate. J. Anal. Appl. Pyrolysis 98, 177–183 (2012)CrossRefGoogle Scholar
  53. 53.
    Onay, O.: Influence of pyrolysis temperature and heating rate on the production of bio-oil and char from safflower seed by pyrolysis, using a well-swept fixed-bed reactor. Fuel Process. Technol. 88, 523–531 (2007)CrossRefGoogle Scholar
  54. 54.
    Zandersons, J., Gravitis, J., Kokorevics, A., Zhurinsh, A., Bikovens, O., Tardenaka, A., Spince, B.: Studies of the Brazilian sugarcane bagasse carbonisation process and products properties. Biomass Bioenergy 17, 209–219 (1999)CrossRefGoogle Scholar
  55. 55.
    Bedmutha, R., Booker, C.J., Ferrante, L., Briens, C., Berruti, F., Yeunga, K.K.C., Scott, I., Conn, K.: Insecticidal and bactericidal characteristics of the bio-oil from the fast pyrolysis of coffee grounds. J. Anal. Appl. Pyrolysis 90, 224–231 (2011)CrossRefGoogle Scholar
  56. 56.
    Pimchuai, A., Dutta, A., Basu, P.: Torrefaction of agriculture residue to enhance combustible properties. Energy Fuels 24, 4638–4645 (2010)CrossRefGoogle Scholar
  57. 57.
    Antal, M.J., Gronli, M.: The art, science, and technology of charcoal production. Ind. Eng. Chem. Res. 42, 1619–1640 (2003)CrossRefGoogle Scholar
  58. 58.
    Boucher, M.E., Chaala, A., Roy, C.: Bio-oils obtained by vacuum pyrolysis of softwood bark as a liquid fuel for gas turbines. Part I: properties of bio-oil and its blends with methanol and a pyrolytic aqueous phase. Biomass Bioenergy 19, 337–350 (2000)CrossRefGoogle Scholar
  59. 59.
    Demirbas, M.F.: Current technologies for biomass conversion into chemicals and fuels. Energy Sources Part A 28, 1181–1188 (2006)CrossRefGoogle Scholar
  60. 60.
    Jayasinghe, P., Hawboldt, K.: A review of bio-oils from waste biomass: focus on fish processing waste. Renew. Sustain. Energy Rev. 16, 798–821 (2012)CrossRefGoogle Scholar
  61. 61.
    Lin, Y., Munroe, P., Joseph, S., Henderson, R., Ziolkowski, A.: Water extractable organic carbon in untreated and chemical treated biochars. Chemosphere 87, 151–157 (2012)CrossRefGoogle Scholar
  62. 62.
    Dumana, G., Okutucu, C., Ucar, S., Stahl, R., Yanik, J.: The slow and fast pyrolysis of cherry seed. Bioresour. Technol. 102, 1869–1878 (2011)CrossRefGoogle Scholar
  63. 63.
    Lee, J.W., Kidder, M., Evans, B.R., Paik, S., Buchanan III, A.C., Garten, C.T., Brown, R.C.: Characterization of biochars produced from cornstovers for soil amendment. Environ. Sci. Technol. 44, 7970–7974 (2010)CrossRefGoogle Scholar
  64. 64.
    Mullen, C.A., Boateng, A.A., Goldberg, N.M., Lima, I.M., Laird, D.A., Hicks, K.B.: Bio-oil and bio-char production from corn cobs and stover by fast pyrolysis. Biomas Bioenergy 34, 67–74 (2010)CrossRefGoogle Scholar
  65. 65.
    Cao, X., Harris, W.: Properties of dairy-manure-derived biochar pertinent to its potential use in remediation. Bioresour. Technol. 101, 5222–5228 (2010)CrossRefGoogle Scholar
  66. 66.
    Cantrell, K.B., Hunt, P.G., Uchimiya, M., Novak, J.M., Ro, K.S.: Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour. Technol. 107, 419–428 (2012)CrossRefGoogle Scholar
  67. 67.
    Azargohar, R., Jacobson, K.L., Powell, E.E., Dalai, A.K.: Evaluation of properties of fast pyrolysis products obtained, from Canadian waste biomass. J. Anal. Appl. Pyrolysis 104, 330–340 (2013)CrossRefGoogle Scholar
  68. 68.
    Demirbas, A.: Properties of charcoal derived from hazelnut shell and the production of briquettes using pyrolytic oil. Energy 24, 141–150 (1999)CrossRefGoogle Scholar
  69. 69.
    Kloss, S., Zehetner, F., Dellantonio, A., Hamid, R., Ottner, F., Liedtke, V., Schwanninger, M., Gerzabek, M.H., Soja, G.: Characterization of slow pyrolysis biochars: effects of feedstocks and pyrolysis temperature on biochar properties. J. Environ. Qual. 41, 990–1000 (2012)CrossRefGoogle Scholar
  70. 70.
    Tsai, W.T., Lee, M.K., Chang, Y.M.: Fast pyrolysis of rice straw, sugarcane bagasse and coconut shell in an induction-heating reactor. J. Anal. Appl. Pyrolysis 76, 230–237 (2006)CrossRefGoogle Scholar
  71. 71.
    Kim, P., Johnson, A., Edmunds, C.W., Radosevich, M., Vogt, F., Rials, T.G., Labbe, N.: Surface functionality and carbon structures in lignocellulosic-derived biochars produced by fast pyrolysis. Energy Fuels 25, 4693–4703 (2011)CrossRefGoogle Scholar
  72. 72.
    Schmidt, M.W.I., Noack, A.G.: Black carbon in soils and sediments: analysis, distribution, implications, and current challenges. Glob. Biogeochem. Cycles 14, 777–793 (2000)CrossRefGoogle Scholar
  73. 73.
    Uchimiya, M., Lima, I.M., Klasson, K.T., Wartelle, L.H.: Contaminant immobilization and nutrient release by biochar soil amendment: roles of natural organic matter. Chemosphere 80, 935–940 (2010)CrossRefGoogle Scholar
  74. 74.
    Manya, J.J.: Pyrolysis for biochar purposes: a review to establish current knowledge gaps and research needs. Environ. Sci. Technol. 46, 7939–7954 (2012)CrossRefGoogle Scholar
  75. 75.
    Azadi, P., Inderwildi, O.R., Farnood, R., King, D.A.: Liquid fuels, hydrogen and chemicals from lignin: a critical review. Renew. Sustain. Energy Rev. 21, 506–523 (2013)CrossRefGoogle Scholar
  76. 76.
    Stefanidis, S.D., Kalogiannis, K.G., Iliopoulou, E.F., Michailof, C.M., Pilavachi, P.A., Lappas, A.A.: A study of lignocellulosic biomass pyrolysis via the pyrolysis of cellulose, hemicellulose and lignin. J. Anal. Appl. Pyrolysis 105, 143–150 (2014)CrossRefGoogle Scholar
  77. 77.
    Brown, J.C., Renvoize, S., Chiang, Y.C., Ibaragi, Y., Flavell, R., Greef, J., Huang, L., Hsu, T.W., Kim, D.S., Hastings, A., Schwarz, K., Stampfl, P., Valentine, J., Yamada, T., Xi, Q., Donnison, I.: Developing Miscanthus for bioenergy. In: Halford, N.G., Karp, A. (eds.) Energy Crops, pp. 301–321. The Royal Society of Chemistry, Cambridge (2011)Google Scholar
  78. 78.
    Ro, K.S., Cantrell, K.B., Hunt, P.G.: High-temperature pyrolysis of blended animal manures for producing renewable energy and value-added biochar. Ind. Eng. Chem. Res. 49, 10125–10131 (2010)CrossRefGoogle Scholar
  79. 79.
    Pastorova, I., Botto, R.E., Arisz, P.W., Boon, J.J.: Cellulose char structure: a combined analytical Py-GC-MS, FTIR, and NMR study. Carbohydr. Res. 262, 27–47 (1994)CrossRefGoogle Scholar
  80. 80.
    Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G.: An overview of the chemical composition of biomass. Fuel 89, 913–933 (2010)CrossRefGoogle Scholar
  81. 81.
    Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.M., Ham-Pichavant, F., Cansell, F., Aymonier, C.: Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35, 298–307 (2011)CrossRefGoogle Scholar
  82. 82.
    Fisher, T., Hajaligol, M., Waymack, B., Kellogg, D.: Pyrolysis behaviour and kinetics of biomass derived materials. J. Anal. Appl. Pyrolysis 62, 331–349 (2002)CrossRefGoogle Scholar
  83. 83.
    Vassilev, S.V., Baxter, D., Andersen, L.K., Vassileva, C.G.: An overview of the composition and application of biomass ash. Part 1. Phase–mineral and chemical composition and classification. Fuel 105, 40–76 (2013)CrossRefGoogle Scholar
  84. 84.
    Nanda, S., Mohanty, P., Pant, K.K., Naik, S., Kozinski, J.A., Dalai, A.K.: Characterization of North American lignocellulosic biomass and biochars in terms of their candidacy for alternate renewable fuels. Bioenergy Res. 6, 663–677 (2013)CrossRefGoogle Scholar
  85. 85.
    Yaman, S.: Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy Convers. Manag. 45, 651–671 (2004)CrossRefGoogle Scholar
  86. 86.
    Xu, R.K., Xiao, S.C., Yuan, J.H., Zhao, A.Z.: Adsorption of methyl violet from aqueous solutions by the biochars derived from crop residues. Bioresour. Technol. 102, 10293–10298 (2011)CrossRefGoogle Scholar
  87. 87.
    Moon, D.H., Park, J.W., Chang, Y.Y., Ok, Y.S., Lee, S.S., Ahmad, M., Koutsospyros, A., Park, J.H., Baek, K.: Immobilization of lead in contaminated firing range soil using biochar. Environ. Sci. Pollut. Res. 20, 8464–8471 (2013)CrossRefGoogle Scholar
  88. 88.
    Lehmann, J., Joseph, S.: Biochar for Environmental Management: Science and Technology. Earthscan, Sterling (2009)Google Scholar
  89. 89.
    Melligan, F., Auccaise, R., Novotny, E.H., Leahy, J.J., Hayes, M.H.B., Kwapinski, W.: Pressurised pyrolysis of Miscanthus using a fixed bed reactor. Bioresour. Technol. 102, 3466–3470 (2011)CrossRefGoogle Scholar
  90. 90.
    Cetin, E., Moghtaderi, B., Gupta, R., Wall, T.F.: Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars. Fuel 83, 2139–2150 (2004)CrossRefGoogle Scholar
  91. 91.
    Sueyasu, T., Oike, T., Mori, A., Kudo, S., Norinaga, K., Hayashi, J.: Simultaneous steam reforming of tar and steam gasification of char from the pyrolysis of potassium-loaded woody biomass. Energy Fuels 26, 199–208 (2012)CrossRefGoogle Scholar
  92. 92.
    Di Blasi, C.: Modeling chemical and physical processes of wood and biomass pyrolysis. Prog. Energy Combust. Sci. 34, 47–90 (2008)CrossRefGoogle Scholar
  93. 93.
    Nzihou, A., Stanmore, B., Sharrock, P.: A review of catalysts for the gasification of biomass char, with some reference to coal. Energy 58, 305–317 (2013)CrossRefGoogle Scholar
  94. 94.
    Li, X., Hayashi, J.I., Li, C.Z.: Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part VII. Raman spectroscopic study on the changes in char structure during the catalytic gasification in air. Fuel 85, 1509–1517 (2006)CrossRefGoogle Scholar
  95. 95.
    Asadullah, M., Zhang, S., Min, Z., Yimsiri, P., Li, C.Z.: Effects of biomass char structure on its gasification reactivity. Bioresour. Technol. 101, 7935–7943 (2010)CrossRefGoogle Scholar
  96. 96.
    Salleh, M.A.M., Kisiki, N.H., Yusuf, H.M., Ghani, W.A.W.A.K.: Gasification of biochar from empty fruit bunch in a fluidized bed reactor. Energies 3, 1344–1352 (2010)CrossRefGoogle Scholar
  97. 97.
    Rostrup-Nielsen, J.R.: Conversion of hydrocarbons and alcohols for fuel cells. Phys. Chem. Chem. Phys. 3, 283–288 (2001)CrossRefGoogle Scholar
  98. 98.
    Pakpour, F., Najafpour, G., Tabatabaei, M., Tohidfar, M., Younesi, H.: Biohydrogen production from CO-rich syngas via a locally isolated Rhodopseudomonas palustris PT. Bioproc. Biosyst. Eng. 37, 923–930 (2014)CrossRefGoogle Scholar
  99. 99.
    Levin, D.B., Pitt, L., Love, M.: Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrog. Energy 29, 173–185 (2004)CrossRefGoogle Scholar
  100. 100.
    Maness, P.C., Weaver, P.F.: A potential bioremediation role for photosynthetic bacteria. In: Sikdal, S.K., Irvine, R.L. (eds.) Bioremediation: principles and practice, vol. 2. Technomic Publishing Co Inc, Lancaster (1997)Google Scholar
  101. 101.
    Shabangu, S., Woolf, D., Fisher, E.M., Angenent, L.T., Lehmann, J.: Techno-economic assessment of biomass slow pyrolysis into different biochar and methanol concepts. Fuel 117, 742–748 (2014)CrossRefGoogle Scholar
  102. 102.
    Klier, K., Chatikavanij, V., Herman, R.G., Simmons, G.W.: Catalytic synthesis of methanol from CO/H2: IV. The effects of carbon dioxide. J. Catal. 74, 343–360 (1982)CrossRefGoogle Scholar
  103. 103.
    Unruh, D., Pabst, K., Schaub, G.: Fischer–Tropsch synfuels from biomass: maximizing carbon efficiency and hydrocarbon yield. Energy Fuels 24, 2634–2641 (2010)CrossRefGoogle Scholar
  104. 104.
    Azargohar, R., Dalai, A.K.: Biochar as a precursor of activated carbon. Appl. Biochem. Biotechnol. 129–132, 762–773 (2006)Google Scholar
  105. 105.
    Dalai, A.K., Majumdar, A., Chowdhury, A., Tollefson, E.L.: The effects of pressure and temperature on the catalytic oxidation of hydrogen sulfide in natural gas and regeneration of the catalyst to recover the sulfur produced. Can. J. Chem. Eng. 71, 75–82 (1993)CrossRefGoogle Scholar
  106. 106.
    Juntgen, H.: Activated carbon as catalyst support: a review of new research results. Fuel 65, 1436–1446 (1986)CrossRefGoogle Scholar
  107. 107.
    Kalyani, P., Anitha, A.: Biomass carbon & its prospects in electrochemical energy systems. Int. J. Hydrog. Energy 38, 4034–4045 (2013)CrossRefGoogle Scholar
  108. 108.
    Romanos, J., Beckner, M., Rash, T., Firlej, L., Kuchta, B., Yu, P., Suppes, G., Wexler, C., Pfeifer, P.: Nanospace engineering of KOH activated carbon. Nanotechnology 23(015401), 1–7 (2012)Google Scholar
  109. 109.
    Ioannidou, O., Zabaniotou, A.: Agricultural residues as precursors for activated carbon production—a review. Renew. Sustain. Energy Rev. 11, 1966–2005 (2007)CrossRefGoogle Scholar
  110. 110.
    Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Rivera-Utrilla, J., Sánchez-Polo, M.: Waste materials for activated carbon preparation and its use in aqueous-phase treatment: a review. J. Environ. Manag. 85, 833–846 (2007)CrossRefGoogle Scholar
  111. 111.
    Suhas, Carrott, P.J.M., Ribeiro Carrott, M.M.L.: Lignin—from natural adsorbent to activated carbon: a review. Bioresour. Technol. 98, 2301–2312 (2007)CrossRefGoogle Scholar
  112. 112.
    Fan, M., Marshall, W., Daugaard, D., Brown, R.C.: Steam activation of chars produced from oat hulls and corn stover. Bioresour. Technol. 93, 103–107 (2004)CrossRefGoogle Scholar
  113. 113.
    Zhang, T., Walawender, W.P., Fan, L.T., Fan, M., Daugaard, D., Brown, R.C.: Preparation of activated carbon from forest and agricultural residues through CO2 activation. Chem. Eng. J. 105, 53–59 (2004)CrossRefGoogle Scholar
  114. 114.
    Aygün, A., Yenisoy-Karakaş, S., Dumana, I.: Production of granular activated carbon from fruit stones and nutshells and evaluation of their physical, chemical and adsorption properties. Microporous Mesoporous Mater. 66, 189–195 (2003)CrossRefGoogle Scholar
  115. 115.
    Kadirvelu, K., Namasivayam, C.: Activated carbon from coconut coirpith as metal adsorbent: adsorption of Cd(II) from aqueous solution. Adv. Environ. Res. 7, 471–478 (2003)CrossRefGoogle Scholar
  116. 116.
    Inomata, K., Kanazawa, K., Urabe, Y., Hosono, H., Araki, T.: Natural gas storage in activated carbon pellets without a binder. Carbon 40, 87–93 (2002)CrossRefGoogle Scholar
  117. 117.
    Otowa, T., Nojima, Y., Miyazaki, T.: Development of KOH activated high surface area carbon and its application to drinking water purification. Carbon 35, 1315–1319 (1997)CrossRefGoogle Scholar
  118. 118.
    Ahmadpour, A., Do, D.D.: The preparation of active carbons from coal by chemical and physical activation. Carbon 34, 471–479 (1996)CrossRefGoogle Scholar
  119. 119.
    López, F.A., Centeno, T.A., Rodríguez, O., Alguacil, F.J.: Preparation and characterization of activated carbon from the char produced in the thermolysis of granulated scrap tyres. J. Air Waste Manag. Assoc. 63, 534–544 (2013)CrossRefGoogle Scholar
  120. 120.
    Merchant, A.A., Petrich, M.A.: Pyrolysis of scrap tires and conversion of chars to activated carbon. AIChE J. 39, 1370–1376 (1993)CrossRefGoogle Scholar
  121. 121.
    Sircar, S., Golden, T.C., Rao, M.B.: Activated carbon for gas separation and storage. Carbon 34, 1–12 (1996)CrossRefGoogle Scholar
  122. 122.
    Guo, D., Shi, Q., He, B., Yuan, X.: Different solvents for the regeneration of the exhausted activated carbon used in the treatment of coking wastewater. J. Hazard. Mater. 186, 1788–1793 (2011)CrossRefGoogle Scholar
  123. 123.
    Özkaya, B.: Adsorption and desorption of phenol on activated carbon and a comparison of isotherm models. J. Hazard. Mater. B129, 158–163 (2006)CrossRefGoogle Scholar
  124. 124.
    Hamdaoui, O., Naffrechoux, E., Tifouti, L., Pétrier, C.: Effects of ultrasound on adsorption–desorption of p-chlorophenol on granular activated carbon. Ultrason. Sonochem. 10, 109–114 (2003)CrossRefGoogle Scholar
  125. 125.
    Ao, C.H., Lee, S.C.: Indoor air purification by photocatalyst TiO2 immobilized on an activated carbon filter installed in an air cleaner. Chem. Eng. Sci. 60, 103–109 (2005)CrossRefGoogle Scholar
  126. 126.
    Yates, M., Blanco, J., Avila, P., Martin, M.P.: Honeycomb monoliths of activated carbons for effluent gas purification. Microporous Mesoporous Mater. 37, 201–208 (2000)CrossRefGoogle Scholar
  127. 127.
    Graydon, J.W., Zhang, X., Kirk, D.W., Jia, C.Q.: Sorption and stability of mercury on activated carbon for emission control. J. Hazard. Mater. 168, 978–982 (2009)CrossRefGoogle Scholar
  128. 128.
    Hu, X., Lei, L., Chu, H.P., Yue, P.L.: Copper/activated carbon as catalyst for organic wastewater treatment. Carbon 37, 631–637 (1999)CrossRefGoogle Scholar
  129. 129.
    Zazo, J.A., Casas, J.A., Mohedano, A.F., Rodríguez, J.J.: Catalytic wet peroxide oxidation of phenol with a Fe/active carbon catalyst. Appl. Catal. B Environ. 65, 261–268 (2006)CrossRefGoogle Scholar
  130. 130.
    Minocha, A., Herold, D.A., Barth, J.T., Gideon, D.A., Spyker, D.A.: Activated charcoal in oral ethanol absorption: lack of effect in humans. J. Toxicol. Clin. Toxicol. 24, 225–234 (1986)CrossRefGoogle Scholar
  131. 131.
    Decker, W.J., Combs, H.F., Corby, D.G.: Adsorption of drugs and poisons by activated charcoal. Toxicol. Appl. Pharmacol. 13, 454–460 (1968)CrossRefGoogle Scholar
  132. 132.
    Favin, F.D., Klein-Schwartz, W., Oderda, G.M., Rose, S.R.: In vitro study of lithium carbonate adsorption by activated charcoal. Clin. Toxicol. 26, 443–450 (1988)Google Scholar
  133. 133.
    Olson, K.R.: Activated charcoal for acute poisoning: one toxicologist’s journey. J. Med. Toxicol. 6, 190–198 (2010)CrossRefGoogle Scholar
  134. 134.
    Cooney, D.O.: Activated charcoal in medical applications. Marcel Dekker, New York (1995)CrossRefGoogle Scholar
  135. 135.
    Chin, L., Picchioni, A.L., Bourn, W.M., Laird, H.E.: Optimal antidotal dose of activated charcoal. Toxicol. Appl. Pharmacol. 26, 103–108 (1973)CrossRefGoogle Scholar
  136. 136.
    Jurgens, G., Hoegberg, L.C., Graudal, N.A.: The effect of activated charcoal on drug exposure in healthy volunteers: a meta-analysis. Clin. Pharmacol. Ther. 85, 501–505 (2009)CrossRefGoogle Scholar
  137. 137.
    Erickson, C.: Historical ecology and future explorations. In: Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I. (eds.) Amazonian Dark Earths: Origin, Properties, Management, pp. 455–493. Kluwer Academic Publishers, Netherlands (2003)Google Scholar
  138. 138.
    Gundale, M.J., DeLuca, T.H.: Temperature and source material influence ecological attributes of ponderosa pine and Douglas-fir charcoal. For. Ecol. Manag. 231, 86–93 (2006)CrossRefGoogle Scholar
  139. 139.
    Pietikainen, J., Kiikkila, O., Fritze, H.: Charcoal as a habitat for microbes and its effect on the microbial community of the underlying humus. Oikos 89, 231–242 (2000)CrossRefGoogle Scholar
  140. 140.
    Novtny, E.H., Deazevedo, E.R., Bonamba, T.J., Cunha, T.J.F., Madari, B.E., Benites, V.M., Hayes, M.H.B.: Studies of the compositions of humic acids from amazonian dark earth soils. Environ. Sci. Technol. 41, 400–405 (2007)CrossRefGoogle Scholar
  141. 141.
    Schmidt, M.W.I., Torn, M.S., Abiven, S., Dittmar, T., Guggenberger, G., Janssens, I.A., Kleber, M., Kogel-Knabner, I., Lehmann, J., Manning, D.A.C., Nannipieri, P., Rasse, D.P., Weiner, S., Trumbore, S.E.: Persistence of soil organic matter as an ecosystem property. Nature 478, 49–56 (2011)CrossRefGoogle Scholar
  142. 142.
    Seifritz, W.: Should we store carbon in charcoal? Int. J. Hydrog. Energy 18, 405–407 (1993)CrossRefGoogle Scholar
  143. 143.
    Atkinson, C.J., Fitzgerald, J.D., Hipps, N.A.: Potential mechanisms for achieving agricultural benefits from biochar application to temperate soils: a review. Plant Soil 337, 1–18 (2010)CrossRefGoogle Scholar
  144. 144.
    Lehmann, J., Gaunt, J., Rondon, M.: Biochar sequestration in terrestrial ecosystems—a review. Mitig. Adapt. Strateg. Glob. Change 11, 403–427 (2006)CrossRefGoogle Scholar
  145. 145.
    Nguyen, B., Lehmann, J., Hockaday, W.C., Joseph, S., Masiello, C.A.: Temperature sensitivity of black carbon decomposition and oxidation. Environ. Sci. Technol. 44, 3324–3331 (2010)CrossRefGoogle Scholar
  146. 146.
    Major, J., Lehmann, J., Rondon, M., Goodale, C.: Fate of soil-applied black carbon: downward migration, leaching and soil respiration. Glob. Change Biol. 16, 1366–1379 (2010)CrossRefGoogle Scholar
  147. 147.
    Sombroek, W., Ruivo, M.D.L., Fearnside, P.M., Glaser, B., Lehmann, J.: Amazonian dark earths as carbon stores and sinks. In: Lehmann, J., Kern, D.C., Glaser, B., Woods, W.I. (eds.) Amazonian Dark Earths: Origin, Properties, Management, pp. 125–139. Kluwer Academic Publishers, Netherlands (2003)Google Scholar
  148. 148.
    Liang, B., Lehmann, J., Solomon, D., Kinyangi, J., Grossman, J., O’Neill, B., Skjemstad, J.O., Thies, J., Luizao, F.J., Petersen, J., Neves, E.G.: Black carbon increases cation exchange capacity in soils. Soil Sci. Soc. Am. J. 70, 1719–1730 (2006)CrossRefGoogle Scholar
  149. 149.
    Lehmann, J., Rillig, M.C., Thies, J., Masiello, C.A., Hockaday, W.C., Crowley, D.: Biochar effects on soil biota—a review. Soil Biol. Biochem. 43, 1812–1836 (2011)CrossRefGoogle Scholar
  150. 150.
    Graber, E.R., Harel, Y.M., Kolton, M., Cytryn, E., Silber, A., David, D.R., Tsechansky, L., Borenshtein, M., Elad, Y.: Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant Soil 337, 481–496 (2010)CrossRefGoogle Scholar
  151. 151.
    Warnock, D.D., Mummey, D.L., McBride, B., Major, J., Lehmann, J., Rillig, M.C.: Influences of non-herbaceous biochar on arbuscular mycorrhizal fungal abundances in roots and soils: results from growth-chamber and field experiments. Appl. Soil Ecol. 46, 450–456 (2010)CrossRefGoogle Scholar
  152. 152.
    Rillig, M.C., Wagner, M., Salem, M., Antunes, P.M., George, C., Ramke, H.G., Titirici, M.M., Antonietti, M.: Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza. Appl. Soil Ecol. 45, 238–242 (2010)CrossRefGoogle Scholar
  153. 153.
    Berglund, L.M., DeLuca, T.H., Zackrisson, T.H.: Activated carbon amendments of soil alters nitrification rates in Scots pine forests. Soil Biol. Biochem. 36, 2067–2073 (2004)CrossRefGoogle Scholar
  154. 154.
    Kumar, S., Jain, M.C., Chhonkar, P.K.: A note on the stimulation of biogas production from cattle dung by addition of charcoal. Biol. Wastes 20, 1209–1215 (1987)CrossRefGoogle Scholar
  155. 155.
    Asai, H., Samson, B.K., Stephan, H.M., Songyikhangsuthor, K., Homma, K., Kiyono, Y., Inoue, Y., Shiraiwa, T., Horie, T.: Biochar amendment techniques for upland rice production in Northern Laos: 1. Soil physical properties, leaf SPAD and grain yield. Field Crops Res. 111, 81–84 (2009)CrossRefGoogle Scholar
  156. 156.
    Watson, R.T., Noble, R., Bolin, B., Ravindranath, N.H., Verardo, D.J., Dokken, D.J.: Land Use, Land-Use Change, and Forestry. Intergovernmental Panel on Climatic Change Special Report. Cambridge University Press, Cambridge (2000)Google Scholar
  157. 157.
    Renner, R.: Rethinking biochar. Environ. Sci. Technol. 41, 5932–5933 (2007)CrossRefGoogle Scholar
  158. 158.
    Lehmann, J.: A handful of carbon. Nature 447, 143–144 (2007)CrossRefGoogle Scholar
  159. 159.
    Lee, J.W., Li, R.: Integration of fossil energy systems with CO2 sequestration through NH4HCO3 production. Energy Convers. Manag. 44, 1535–1546 (2003)CrossRefGoogle Scholar
  160. 160.
    Laird, D.A., Brown, R.C., Amonette, J.E., Lehmann, J.: Review of the pyrolysis platform for coproducing bio-oil and biochar. Biofuels Bioprod. Biorefin. 3, 547–562 (2009)CrossRefGoogle Scholar
  161. 161.
    Nanda, S., Azargohar, R., Dalai, A.K., Kozinski, J.A.: An assessment on the sustainability of lignocellulosic biomass for biorefining. Renew. Sustain. Energy Rev. 50, 925–941 (2015)CrossRefGoogle Scholar
  162. 162.
    Mathews, J.A.: Carbon-negative biofuels. Energy Policy 36, 940–945 (2008)CrossRefGoogle Scholar
  163. 163.
    Portet, C., Yushin, G., Gogotsi, Y.: Electrochemical performance of carbon onions, nanodiamonds, carbon black and multiwalled nanotubes in electrical double layer capacitors. Carbon 45, 2511–2518 (2007)CrossRefGoogle Scholar
  164. 164.
    Zhang, Y., Feng, H., Wu, X., Wang, L., Zhang, A., Xia, T., Dong, H., Li, X., Zhang, L.: Progress of electrochemical capacitor electrode materials: a review. Int. J. Hydrog. Energ. 34, 4889–4899 (2009)CrossRefGoogle Scholar
  165. 165.
    Wang, H., Yoshio, M.: Graphite, a suitable positive electrode material for high-energy electrochemical capacitors. Electrochem. Commun. 8, 1481–1486 (2006)CrossRefGoogle Scholar
  166. 166.
    Xu, B., Wu, F., Chen, S., Zhang, C., Cao, G., Yang, Y.: Activated carbon fiber cloths as electrodes for high performance electric double layer capacitors. Electrochim. Acta 52, 4595–4598 (2007)CrossRefGoogle Scholar
  167. 167.
    Fang, B., Binder, L.: Enhanced surface hydrophobisation for improved performance of carbon aerogel electrochemical capacitor. Electrochim. Acta 52, 6916–6921 (2007)CrossRefGoogle Scholar
  168. 168.
    Katakabe, T., Kaneko, T., Watanabe, M., Fukushima, T., Aida, T.: Electric double-layer capacitors using “bucky gels” consisting of an ionic liquid and carbon nanotubes. J. Electrochem. Soc. 152, A1913–A1916 (2005)CrossRefGoogle Scholar
  169. 169.
    Kim, S.U., Lee, L.H.: Carbon nanofiber composites for the electrodes of electrochemical capacitors. Chem. Phys. Lett. 400, 253–257 (2004)CrossRefGoogle Scholar
  170. 170.
    Shi, L., Liu, X., Niu, W., Li, H., Han, S., Chen, J., Xu, G.: Hydrogen peroxide biosensor based on direct electrochemistry of soybean peroxidase immobilized on single-walled carbon nanohorn modified electrode. Biosens. Bioelectron. 24, 1159–1163 (2009)CrossRefGoogle Scholar
  171. 171.
    Inagaki, M., Konno, H., Tanaike, O.: Carbon materials for electrochemical capacitors. J. Power Sources 195, 7880–7903 (2010)CrossRefGoogle Scholar
  172. 172.
    Hulicova, D., Yamashita, J., Soneda, Y., Hatori, H., Kodama, M.: Supercapacitors prepared from melamine-based carbon. Chem. Mater. 17, 1241–1247 (2005)CrossRefGoogle Scholar
  173. 173.
    Huggins, T.M., Pietron, J.J., Wang, H., Ren, Z.J., Biffinger, J.C.: Graphitic biochar as a cathode electrocatalyst support for microbial fuel cells. Bioresour. Technol. 195, 147–153 (2015)CrossRefGoogle Scholar
  174. 174.
    Huggins, T., Wang, H., Kearns, J., Jenkins, P., Ren, Z.J.: Biochar as a sustainable electrode material for electricity production in microbial fuel cells. Bioresour. Technol. 157, 114–119 (2014)CrossRefGoogle Scholar
  175. 175.
    Jiang, J., Zhang, L., Wang, X., Holm, N., Rajagopalan, K., Chen, F., Ma, S.: Highly ordered macroporous woody biochar with ultra-high carboncontent as supercapacitor electrodes. Electrochim. Acta 113, 481–489 (2013)CrossRefGoogle Scholar
  176. 176.
    Zhang, L., Jiang, J., Holm, N., Chen, F.: Mini-chunk biochar supercapacitors. J. Appl. Electrochem. 44, 1145–1151 (2014)CrossRefGoogle Scholar
  177. 177.
    Gu, X., Wang, Y., Lai, C., Qiu, J., Li, S., Hou, Y., Martens, W., Mahmood, N., Zhang, S.: Microporous bamboo biochar for lithium–sulfur batteries. Nano Res. 8, 129–139 (2015)CrossRefGoogle Scholar
  178. 178.
    Chen, W.H., Ye, S.C., Sheen, M.K.: Hydrothermal carbonization of sugarcane bagasse via wet torrefaction in association with microwave heating. Bioresour. Technol. 118, 195–203 (2012)CrossRefGoogle Scholar
  179. 179.
    Hu, B., Wang, K., Wu, L., Yu, S.H., Antonietti, M., Titirici, M.M.: Engineering carbon materials from the hydrothermal carbonization process of biomass. Adv. Mater. 22, 813–828 (2010)CrossRefGoogle Scholar
  180. 180.
    Dubois, S.M.M., Declerck, X., Charlier, J.C., Payne, M.C.: Spin filtering and magneto-resistive effect at the graphene/h-BN ribbon interface. ACS Nano 7, 4578–4585 (2013)CrossRefGoogle Scholar
  181. 181.
    Zhang, M., Gao, B., Yao, Y., Xue, Y., Inyang, M.: Synthesis, characterization, and environmental implications of graphene-coated biochar. Sci. Total Environ. 435–436, 567–572 (2012)CrossRefGoogle Scholar
  182. 182.
    Inyang, M., Gao, B., Zimmerman, A., Zhang, M., Chen, H.: Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites. Chem. Eng. J. 236, 39–46 (2014)CrossRefGoogle Scholar
  183. 183.
    Jin, H., Wang, X., Gu, Z., Polin, J.: Carbon materials from high ash biochar for supercapacitor and improvement of capacitance with HNO3 surface oxidation. J. Power Sources 236, 285–292 (2013)CrossRefGoogle Scholar
  184. 184.
    Wang, H., Xu, Z., Kohandehghan, A., Li, Z., Cui, K., Tan, X., Stephenson, T.J., King’ondu, C.K., Holt, C.M.B., Olsen, B.C., Tak, J.K., Harfield, D., Anyia, A.O., Mitlin, D.: Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7, 5131–5141 (2013)CrossRefGoogle Scholar
  185. 185.
    Inagaki, M.: Pores in carbon materials-importance of their control. New Carbon Mater. 24, 193–232 (2009)CrossRefGoogle Scholar
  186. 186.
    Fang, B., Wei, Y.Z., Maruyama, K., Kumagai, M.: High capacity supercapacitors based on modified activated carbon aerogel. J. Appl. Electrochem. 35, 229–233 (2005)CrossRefGoogle Scholar
  187. 187.
    De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339, 535–539 (2013)CrossRefGoogle Scholar
  188. 188.
    Miller, J.R.: Valuing reversible energy storage. Science 335, 1312–1313 (2012)CrossRefGoogle Scholar
  189. 189.
    Nakamura, M., Tahara, Y., Murakami, T., Iijima, S., Yudasaka, M.: Gastrointestinal actions of orally-administered single-walled carbon nanohorns. Carbon 69, 409–416 (2014)CrossRefGoogle Scholar
  190. 190.
    Costa, R.D., Feihl, S., Kahnt, A., Gambhir, S., Officer, D.L., Wallace, G.G., Lucio, M.I., Herrero, M.A., Vazquez, E., Syrgiannis, Z., Prato, M., Guldi, D.M.: Carbon nanohorns as integrative materials for efficient dye-sensitized solar cells. Adv. Mater. 25, 6513–6518 (2013)CrossRefGoogle Scholar
  191. 191.
    Azami, T., Kasuya, D., Yuge, R., Yudasaka, M., Iijima, S., Yoshitake, T., Kubo, Y.: Large-scale production of single-wall carbon nanohorns with high purity. J. Phys. Chem. C 112, 1330–1334 (2008)CrossRefGoogle Scholar
  192. 192.
    Savage, N.: Come into the light. Nature 483, S38–S39 (2012)CrossRefGoogle Scholar
  193. 193.
    Savage, N.: Super carbon. Nature 483, S30–S31 (2012)CrossRefGoogle Scholar
  194. 194.
    Chuenchom, L., Kraehnert, R., Smarsly, B.M.: Recent progress in soft-templating of porous carbon materials. Soft Matter 8, 10801–10812 (2012)CrossRefGoogle Scholar
  195. 195.
    Sakintuna, B., Yurum, Y.: Templated porous carbons: a review article. Ind. Eng. Chem. Res. 44, 2893–2902 (2005)CrossRefGoogle Scholar
  196. 196.
    Paraknowitsch, J.P., Thomas, A.: Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6, 2839–2855 (2013)CrossRefGoogle Scholar
  197. 197.
    Faruk, O., Bledzki, A.K., Fink, H.P., Sain, M.: Progress report on natural fiber reinforced composites. Macromol. Mater. Eng. 299, 9–26 (2014)CrossRefGoogle Scholar
  198. 198.
    John, M.J., Thomas, S.: Biofibres and biocomposites. Carbohydr. Polym. 71, 343–364 (2008)CrossRefGoogle Scholar
  199. 199.
    Ashori, A.: Wood–plastic composites as promising green-composites for automotive industries. Bioresour. Technol. 99, 4661–4667 (2008)CrossRefGoogle Scholar
  200. 200.
    Das, O., Sarmah, A.K., Bhattacharyya, D.: A sustainable and resilient approach through biochar addition in wood polymer composites. Sci. Total Environ. 512–513, 326–336 (2015)CrossRefGoogle Scholar
  201. 201.
    Ahmetli, G., Kocaman, S., Ozaytekin, I., Bozkurt, P.: Epoxy composites based on inexpensive char filler obtained from plastic waste and natural resources. Polym. Compos. 34, 500–509 (2013)CrossRefGoogle Scholar
  202. 202.
    Peterson, S.C.: Evaluating corn starch and corn stover biochar as renewable filler in carboxylated styrene–butadiene rubber composites. J. Elastom. Plast. 44, 43–54 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Sonil Nanda
    • 1
  • Ajay K. Dalai
    • 2
  • Franco Berruti
    • 3
  • Janusz A. Kozinski
    • 1
  1. 1.Department of Earth and Space Science and Engineering, Lassonde School of EngineeringYork UniversityTorontoCanada
  2. 2.Department of Chemical and Biological EngineeringUniversity of SaskatchewanSaskatoonCanada
  3. 3.Institute for Chemicals and Fuels from Alternative Resources, Department of Chemical and Biochemical EngineeringUniversity of Western OntarioLondonCanada

Personalised recommendations