Advertisement

Waste and Biomass Valorization

, Volume 7, Issue 2, pp 281–292 | Cite as

Emissions of Nitrous Oxide, Methane and Ammonia After Field Application of Digested and Dewatered Sewage Sludge With or Without Addition of Urea

  • Agnes WillénEmail author
  • Håkan Jönsson
  • Mikael Pell
  • Lena Rodhe
Original Paper

Abstract

Purpose

By recycling sewage sludge (SS) to productive land, its plant nutrients can be utilised. However, the use of organic fertilisers carries health risks and causes emissions of nitrous oxide (N2O), methane (CH4) and ammonia (NH3). One measure to sanitise SS from human pathogens is addition of NH3.

Methods

Mesophilically digested and dewatered SS treated with urea and stored, or only stored, was applied to arable land in spring and autumn, respectively, and the effects of immediate or delayed incorporation (by 4 h) on emissions of N2O, CH4 and, in spring, NH3 were investigated.

Results

N2O emissions in autumn from soil treated with SS were significantly higher than from soil without SS application (0.09, 1.31 and 0.68 kg N2O-N ha−1 for control, immediate and delayed incorporation, respectively). These emissions were significantly correlated with volumetric water content in soil. Corresponding N2O emissions in spring were 0.15, 0.57 and 0.41 kg N2O-N ha−1. Delayed incorporation (0.20 and 0.34 % of added N in spring and autumn, respectively) tended to reduce N2O emissions compared with immediate incorporation (0.32 and 0.71 % of added N in spring and autumn, respectively). Nitrous oxide emissions from SS were apparently lower after spring than after autumn application, likely because of drier soil and crop uptake of nitrogen in spring. Methane emissions were negative or negligible. Timing of incorporation had no statistically significant effect on NH3 emissions.

Conclusions

Nitrous oxide emissions from soil treated with SS at a rate based on the maximum permissible P level were moderate and CH4 emissions negligible.

Keywords

Ammonia Arable land Fertiliser Methane Nitrous oxide Sewage sludge 

Notes

Acknowledgments

We gratefully acknowledge Marianne Tersmeden, Anders Ringmar, Johnny Ascue, Tomas Reilander and Linnea Persson for their skilful contributions in field and laboratory work, Birgitta Vegerfors-Persson for statistical advice and Mary McAfee for language editing. The project was funded by the Swedish Research Council Formas and the Development Fund of the Swedish Water Association and supported by the Swedish Environment Protection Agency, Vinnova, Southwest Stockholm region water companies (Syvab), the Käppala Association, Ragnar Sellbergs Foundation and Uppsala, Karlstad and Sunne municipalities.

References

  1. 1.
    Swedish Government: Svenska miljömål—för ett effektivare miljöarbete (Swedish environmental goals—for a more efficient environmental work). Proposition 2009/10:155, Regeringen (Swedish Government), Stockholm, Sweden (2009)Google Scholar
  2. 2.
    SCB: Utsläpp till vatten och slamproduktion 2012. Kommunala reningsverk, massa- och pappersindustri samt övrig industri. (Discharges to water and sewage sludge production in 2012—municipal wastewater treatment plants, pulp and paper industry and other industry, in Swedish with English summary). Produced on behalf of Statistics Sweden and Swedish EPA. MI 22 SM 1401, Statistics Sweden, Stockholm, Sweden (2014)Google Scholar
  3. 3.
    Swedish EPA: Aktionsplan för återföring av fosfor ur avlopp (Action plan for the return of phosphorus from sewage, in Swedish with English summary). Report 5214, Naturvårdsverket (Swedish EPA), Stockholm, Sweden (2002)Google Scholar
  4. 4.
    Swedish EPA: Hållbar återföring av fosfor (Sustainable phosphorous recycling, in Swedish with English summary). Report 6580, Naturvårdsverket (Swedish EPA), Stockholm, Sweden (2013)Google Scholar
  5. 5.
    IPCC: Anthropogenic and natural radiative forcing. Authors: Myhre G, Shindell D, Bréon FM, Collins W, Fuglestvedt J, Huang J, Koch D, Lamarque JF, Lee D, Mendoza B, Nakajima T, Robock A, Stephens G, Takemura T, Zhang H. In: Stocker TF, Qin D, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (ed) Climate Change 2013: The physical science basis. Contribution of working group I to the fifth assessment report of the Intergovernmental panel on climate change, pp. 659–740. Cambridge University Press, Cambridge (2013)Google Scholar
  6. 6.
    Firestone, M.K., Davidson, E.A.: Microbiological basis of NO and N2O production and consumption in soil. In: Andrae, M.O., Schimel, D.S. (eds.) Exchange of Trace Gases Between Terrestrial Ecosystems and the Atmosphere, vol. 47, pp. 7–21. Wiley, Chichester (1989)Google Scholar
  7. 7.
    Stenberg, B., Pell, M., Torstensson, L.: Integrated evaluation of variation in biological, chemical and physical soil properties. Ambio 27, 9–15 (1998)Google Scholar
  8. 8.
    Lynch, M., Neufeld, J.: Ecology and exploration of the rare biosphere. Nature 13, 217–229 (2015)Google Scholar
  9. 9.
    Peters, V., Conrad, R.: Methanogenic and other strictly anaerobic bacteria in desert soil and other oxic soils. Appl. Environ. Microbiol. 61, 1673–1676 (1995)Google Scholar
  10. 10.
    Le Mer, J., Roger, P.: Production, oxidation, emission and consumption of methane by soils: a review. Eur. J. Soil Biol. 37, 25–50 (2001)CrossRefGoogle Scholar
  11. 11.
    Smith, K., Ball, T., Conen, F., Dobbie, K., Massheder, J., Rey, A.: Exchange of greenhouse gases between soil and atmosphere: interactions of soil physical factors and biological processes. Eur. J. Soil Sci. 54, 779–791 (2003)CrossRefGoogle Scholar
  12. 12.
    Goedkoop, M., Heijungs, R., Huijbregts, M., De Schryver, A., Struijs, J., van Zelm, R. (eds.): ReCiPe 2008—A Life Cycle Impact Assessment Method Which Comprises Harmonised Category Indicators at the Midpoint and the Endpoint Level, First edition, Report I: Characterisation. Ministry of Housing, Spatial Planning and Environment (VROM), Haag (2009)Google Scholar
  13. 13.
    Mosier, A., Hutchinson, G., Sabey, B., Baxter, J.: Nitrous oxide emissions from barley plots treated with ammonium nitrate or sewage sludge. J. Environ. Qual. 11, 78–81 (1982)CrossRefGoogle Scholar
  14. 14.
    Scott, A., Ball, B., Crichton, I., Aitken, M.: Nitrous oxide and carbon dioxide emissions from grassland amended with sewage sludge. Soil Use Manag. 16, 36–41 (2000)CrossRefGoogle Scholar
  15. 15.
    Ambus, P., Jensen, J., Priemé, A., Pilegaard, K., Kjøller, A.: Assessment of CH4 and N2O fluxes in a Danish beech (Fagus sylvatica) forest and an adjacent N-fertilised barley (Hordeum vulgare) field: effects of sewage sludge amendments. Nutr. Cycl. Agroecosyst. 60, 15–21 (2001)CrossRefGoogle Scholar
  16. 16.
    Chiaradia, J.J., Chiba, M.K., do Andrade, C.A., de Carmo, J.B., de Oliveira, C., Lavorenti, A.: CO2, CH4 and N2O fluxes in an Ultisol treated with sewage sludge and cultivated with castor bean. Rev. Bras. Ciênc. Solo 33, 1863–1870 (2009)CrossRefGoogle Scholar
  17. 17.
    Fernández-Luqueño, F., Reyes-Varela, V., Martínez-Suárez, C., Reynoso-Keller, R., Méndez-Bautista, J., Ruiz-Romero, E., López-Valdez, F., Luna-Guido, M., Dendooven, L.: Emission of CO2 and N2O from soil cultivated with common bean (Phaseolus vulgaris L.) fertilized with different N sources. Sci. Total Environ. 407, 4289–4296 (2009)CrossRefGoogle Scholar
  18. 18.
    Aguilar-Chávez, Á., Díaz-Rojas, M., del Rosario Cárdenas-Aquino, M., Dendooven, L., Luna-Guido, M.: Greenhouse gas emissions from a wastewater sludge-amended soil cultivated with wheat (Triticum spp. L.) as affected by different application rates of charcoal. Soil Biol. Biochem. 52, 90–95 (2012)CrossRefGoogle Scholar
  19. 19.
    de Urzedo, D.I., Franco, M.P., Pitombo, L.M., do Carmo, J.B.: Effects of organic and inorganic fertilizers on greenhouse gas (GHG) emissions in tropical forestry. For. Ecol. Manag. 310, 37–44 (2013)CrossRefGoogle Scholar
  20. 20.
    Díaz-Rojas, M., Aguilar-Chávez, Á., del Rosario Cárdenas-Aquino, M., Ruíz-Valdiviezo, V.M., Hernández-Valdez, E., Luna-Guido, M., Olalde-Portugal, V., Dendooven, L.: Effects of wastewater sludge, urea and charcoal on greenhouse gas emissions in pots planted with wheat. Appl. Soil Ecol. 73, 19–25 (2014)CrossRefGoogle Scholar
  21. 21.
    Pitombo, L.M., do Carmo, J.B., de Maria, I.C., de Andrade, C.A.: Carbon sequestration and greenhouse gases emissions in soil under sewage sludge. Sci. Agric. 72, 147–156 (2015)CrossRefGoogle Scholar
  22. 22.
    Perälä, P., Kapuinen, P., Esala, M., Tyynelä, S., Regina, K.: Influence of slurry and mineral fertiliser application techniques on N2O and CH4 fluxes from a barley field in southern Finland. Agric. Ecosyst. Environ. 117, 71–78 (2006)CrossRefGoogle Scholar
  23. 23.
    Velthof, G., Mosquera, J.: The impact of slurry application technique on nitrous oxide emission from agricultural soils. Agric. Ecosyst. Environ. 140, 298–308 (2011)CrossRefGoogle Scholar
  24. 24.
    Wulf, S., Maeting, M., Clemens, J.: Application technique and slurry co-fermentation effects on ammonia, nitrous oxide, and methane emissions after spreading. J. Environ. Qual. 31, 1795–1801 (2002)CrossRefGoogle Scholar
  25. 25.
    Parkin, T., Kaspar, T., Singer, J.: Cover crop effects on the fate of N following soil application of swine manure. Plant Soil 289, 141–152 (2006)CrossRefGoogle Scholar
  26. 26.
    Jarecki, M.K., Parkin, T.B., Chan, A.S., Kaspar, T.C., Moorman, T.B., Singer, J.W., Kerr, B.J., Hatfield, J.L., Jones, R.: Cover crop effects on nitrous oxide emission from a manure-treated Mollisol. Agric. Ecosyst. Environ. 134, 29–35 (2009)CrossRefGoogle Scholar
  27. 27.
    Malgeryd, J.: Technical measures to reduce ammonia losses after spreading of animal manure. Nutr. Cycl. Agroecosyst. 51, 51–57 (1998)CrossRefGoogle Scholar
  28. 28.
    Thomsen, I.K., Pedersen, A.R., Nyord, T., Petersen, S.O.: Effects of slurry pre-treatment and application technique on short-term N2O emissions as determined by a new non-linear approach. Agric. Ecosyst. Environ. 136, 227–235 (2010)CrossRefGoogle Scholar
  29. 29.
    Thorman, R., Chadwick, D., Harrison, R., Boyles, L., Matthews, R.: The effect on N2O emissions of storage conditions and rapid incorporation of pig and cattle farmyard manure into tillage land. Biosyst. Eng. 97, 501–511 (2007)CrossRefGoogle Scholar
  30. 30.
    Sommer, S., Sherlock, R., Khan, R.: Nitrous oxide and methane emissions from pig slurry amended soils. Soil Biol. Biochem. 28, 1541–1544 (1996)CrossRefGoogle Scholar
  31. 31.
    Clemens, J., Vandré, R., Kaupenjohann, M., Goldbach, H.: Ammonia and nitrous oxide emissions after landspreading of slurry as influenced by application technique and dry matter-reduction. II. Short term nitrous oxide emissions. Z. Pflanzenernähr. Bodenk. 160, 491–496 (1997)CrossRefGoogle Scholar
  32. 32.
    Webb, J., Chadwick, D., Ellis, S.: Emissions of ammonia and nitrous oxide following incorporation into the soil of farmyard manures stored at different densities. Nutr. Cycl. Agroecosyst. 70, 67–76 (2004)CrossRefGoogle Scholar
  33. 33.
    Velthof, G., Kuikman, P., Oenema, O.: Nitrous oxide emission from animal manures applied to soil under controlled conditions. Biol. Fertil. Soils 37, 221–230 (2003)Google Scholar
  34. 34.
    Fidjeland, J., Lalander, C., Jönsson, H., Vinnerås, B.: Ammonia sanitisation of sewage sludge using urea. Water Sci. Technol. 68, 1866–1872 (2013)CrossRefGoogle Scholar
  35. 35.
    FAO: Guidelines for soil description, 4th edn. Food and agriculture organization of the United Nations, Rome (2006)Google Scholar
  36. 36.
    KLK: Kungliga Lantbruksstyrelsens kungörelse med (5) bestämmelser för undersökning av jord vid statens lantbrukskemiska kontrollanstalt och lantbrukskemisk station med av staten fastställda stadgar. (The Royal Agricultural Board’s Ordinance with (5) regulations for the investigation of soil at the State Agricultural chemical inspection institute and agricultural chemical station with the State established statutes, in Swedish). The Royal Agricultural Board’s Ordinance number 1 (1965)Google Scholar
  37. 37.
    Rodhe, L., Pell, M., Yamulki, S.: Nitrous oxide, methane and ammonia emissions following slurry spreading on grassland. Soil Use Manag. 22, 229–237 (2006)CrossRefGoogle Scholar
  38. 38.
    Svensson, L.: A new dynamic chamber technique for measuring ammonia emissions from land-spread manure and fertilizers. Acta Agric. Scand. Sect. B Soil Plant Sci. 44, 33–46 (1994)Google Scholar
  39. 39.
    Petersen, S.O., Andersen, M.N.: Influence of soil water potential and slurry type on denitrification activity. Soil Biol. Biochem. 28, 977–980 (1996)CrossRefGoogle Scholar
  40. 40.
    Davidson, E.A., Rogers, J., Whitman, W.: Fluxes of nitrous oxide and nitric oxide from terrestrial ecosystems. In: Rogers, J.E., Whitman, W.B. (eds.) Microbial production and consumption of greenhouse gases: methane, nitrogen oxides, and halomethanes, pp. 219–235. American Society for Microbiology, Washington DC (1991)Google Scholar
  41. 41.
    FAO and IFA: Global Estimates of Gaseous Emissions of NH3, NO and N2O from Agricultural Land. International Fertilizer Industry Association and Food and Agriculture Organization of the United Nations, Rome (2001)Google Scholar
  42. 42.
    Karlsson, S., Rodhe, L.: Översyn av Statistiska Centralbyråns beräkning av ammoniakavgången i jordbruket – emissionsfaktorer för ammoniak vid lagring och spridning av stallgödsel (A review of Statistics Sweden’s calculation of ammonia emissions in the agriculture – emission factors for ammonia storage and spreading of manure, in Swedish). Carried out on behalf of the Swedish Board of Agriculture. Swedish Institute of Agricultural and Environmental Engineering (JTI) Uppsala, Sweden (2002)Google Scholar
  43. 43.
    Beauchamp, E., Kidd, G., Thurtell, G.: Ammonia volatilization from sewage sludge applied in the field. J. Environ. Qual. 7, 141–146 (1978)CrossRefGoogle Scholar
  44. 44.
    Donovan, W.C., Logan, T.J.: Factors affecting ammonia volatilization from sewage sludge applied to soil in a laboratory study. J. Environ. Qual. 12, 584–590 (1983)CrossRefGoogle Scholar
  45. 45.
    Smith, K., Dobbie, K., Ball, B., Bakken, L., Sitaula, B., Hansen, S., Brumme, R., Borken, W., Christensen, S., Priemé, A.: Oxidation of atmospheric methane in Northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink. Glob. Change Biol. 6, 791–803 (2000)CrossRefGoogle Scholar
  46. 46.
    Schaufler, G., Kitzler, B., Schindlbacher, A., Skiba, U., Sutton, M., Zechmeister-Boltenstern, S.: Greenhouse gas emissions from European soils under different land use: effects of soil moisture and temperature. Eur. J. Soil Sci. 61, 683–696 (2010)CrossRefGoogle Scholar
  47. 47.
    Majumder, R., Livesley, S.L., Gregory, D., Arndt, S.K.: Biosolid stockpiles are a significant point source for greenhouse gas emissions. J. Environ. Manag. 143, 34–43 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Agnes Willén
    • 1
    • 2
    Email author
  • Håkan Jönsson
    • 2
  • Mikael Pell
    • 3
  • Lena Rodhe
    • 1
  1. 1.Swedish Institute of Agricultural and Environmental EngineeringUppsalaSweden
  2. 2.Department of Energy and TechnologySwedish University of Agricultural SciencesUppsalaSweden
  3. 3.Department of MicrobiologySwedish University of Agricultural SciencesUppsalaSweden

Personalised recommendations