Waste and Biomass Valorization

, Volume 7, Issue 2, pp 343–355 | Cite as

Production of Biodiesel from Crotalaria juncea (Sunn-Hemp) Oil Using Catalytic Trans-Esterification: Process Optimisation Using a Factorial and Box–Behnken Design

  • Suvra Sadhukhan
  • Ujjaini SarkarEmail author
Original Paper


This study consists of the production of biodiesel from methanolysis of Sunn-hemp (Crotalaria juncea) oil, using homogeneous and heterogeneous catalysts. Calcium carbonate enriched sea shells like capiz and conch shell are used as natural catalysts after calcination for trans-esterification. These heterogeneous catalysts are physically characterized in order to locate the active sites using X-ray powder diffraction. Gas chromatography mass spectrometry is used to identify and estimate the fatty acid methyl esters of the biodiesel. Basic fuel properties like specific gravity, moisture content, kinematic viscosity, saponification value, iodine value, flash point, fire point, aniline point, cetane number and heat content are determined to establish this biodiesel as a diesel substitute for a fuel. The fuel properties indicate that after some modifications, Sunn-hemp seed oil based biodiesel could be a promising new source for the production of biofuel. Response Surface Methodology is used to optimize the operating parameters of the process. A Factorial and Box–Behnken Design is used to study the effects of time of reaction, type of catalyst, catalyst concentration and oil to methanol mole ratio on the yield of biodiesel. Statistical analysis shows that the model is significant with a R 2 value of 0.997 having achieved the optimum conditions after 4.15 h, with an oil to methanol molar ratio of 11. 2 wt% catalyst concentration and potassium hydroxide as the best catalyst for the production of 90.25 % biodiesel.


Sunn-hemp Catalyst Methanolysis GCMS RSM 



The authors are grateful to UGC, India for supporting this project under their Major Research Project Grant. The first author is particularly grateful to CSIR, India for providing her with a fellowship of SRF [File No.: 09/096(787)/2013-EMR-I dated 21.03.2013]. The authors also thank the Bose Institute and National Test House, Kolkata, India for their support during some of the tests.

Supplementary material

12649_2015_9454_MOESM1_ESM.doc (98 kb)
Supplementary material 1 (DOC 97 kb)


  1. 1.
    Eddine, B.T., Salah, M.M.: Solid waste as renewable source of energy: current and future possibility in Algeria. Int. J. Energy Environ. Eng. 3, 17 (2012)CrossRefGoogle Scholar
  2. 2.
    Marasabessy, A., Kootstra, A.M.J., Sanders, J.P.M., Weusthuis, R.A.: Dilute H2SO4-catalyzed hydrothermal pretreatment to enhance enzymatic digestibility of Jatropha curcas fruit hull for ethanol fermentation. Int. J. Energy Environ. Eng. 3(1), 1–11 (2012)CrossRefGoogle Scholar
  3. 3.
    Kouzu, M., Kasuno, T., Tajika, M., Sugimoto, Y., Yamanaka, S., Hidaka, J.: Calcium oxide as a solid base catalyst for transesterification of soybean oil and its application to biodiesel production. Fuel 87(12), 2798–2806 (2008)CrossRefGoogle Scholar
  4. 4.
    Bilgen, S.U., Keles, S., Kaygusuz, A., Sari, A., Kaygusuz, K.: Global warming and renewable energy sources for sustainable development: a case study in Turkey. Renew. Sustain. Energy Rev. 12(2), 372–396 (2008)CrossRefGoogle Scholar
  5. 5.
    Chakraborty, R., Sahu, H.: Intensification of biodiesel production from waste goat tallow using infrared radiation: process evaluation through response surface methodology and artificial neural network. Appl. Energy 114, 827–836 (2014)CrossRefGoogle Scholar
  6. 6.
    Ye, B., Li, Y., Qiu, F., Sun, C., Zhao, Z., Ma, T., Yang, D.: Production of biodiesel from soybean oil catalyzed by attapulgite loaded with C4H5O6KNa catalyst. Korean J. Chem. Eng. 30(7), 1395–1402 (2013)CrossRefGoogle Scholar
  7. 7.
    El-Adawy, M., Ibrahim, A., El-Kassaby, M.M.: An experimental evaluation of using waste cooking oil biodiesel in a diesel engine. Energy Technol. 1(12), 726–734 (2013)CrossRefGoogle Scholar
  8. 8.
    Moser, B.R., Vaughn, S.F.: Biodiesel from corn distillers dried grains with solubles: preparation, evaluation, and properties. BioEnergy Res. 5(2), 439–449 (2012)CrossRefGoogle Scholar
  9. 9.
    Kalbande, S.R., More, G.R., Nadre, R.G.: Biodiesel production from non-edible oils of jatropha and karanj for utilization in electrical generator. BioEnergy Res. 1(2), 170–178 (2008)CrossRefGoogle Scholar
  10. 10.
    Chakraborty, R., Banerjee, A.: Prediction of fuel properties of biodiesel produced by sequential esterification and transesterification of used frying soybean oil using statistical analysis. Waste Biomass Valoriz. 1(2), 201–208 (2010)CrossRefGoogle Scholar
  11. 11.
    Talebian-Kiakalaieh, A., Amin, N.A.S., Mazaheri, H.: A review on novel processes of biodiesel production from waste cooking oil. Appl. Energy 104, 683–710 (2013)CrossRefGoogle Scholar
  12. 12.
    Bangjang, T., Saisangtong, R., Kaewchada, A., Jaree, A.: Modification of diesohol fuel properties by using cashew nut shell liquid and biodiesel as additives. Energy Technol 2(9–10), 825–831 (2014)CrossRefGoogle Scholar
  13. 13.
    Singh, V.P.: Indian biofuel scenario: An assessment of science and policy (2011)Google Scholar
  14. 14.
    Shibasaki-Kitakawa, N., Tsuji, T., Kubo, M., Yonemoto, T.: Biodiesel production from waste cooking oil using anion-exchange resin as both catalyst and adsorbent. BioEnergy Res. 4(4), 287–293 (2011)CrossRefGoogle Scholar
  15. 15.
    Leung, D.Y.C., Wu, X., Leung, M.K.H.: A review on biodiesel production using catalyzed transesterification. Appl. Energy 87(4), 1083–1095 (2010)CrossRefGoogle Scholar
  16. 16.
    Balat, M., Balat, H.: Progress in biodiesel processing. Appl. Energy 87(6), 1815–1835 (2010)CrossRefGoogle Scholar
  17. 17.
    Takase, M., Zhao, T., Zhang, M., Chen, Y., Liu, H., Yang, L., Wu, X.: An expatiate review of neem, jatropha, rubber and karanja as multipurpose non-edible biodiesel resources and comparison of their fuel, engine and emission properties. Renew. Sustain. Energy Rev. 43, 495–520 (2015)CrossRefGoogle Scholar
  18. 18.
    Gonsalves, J.B.: An assessment of the biofuels industry in India. (2006)
  19. 19.
    Jose, D.F.M., Raj, R.E., Prasad, B.D., Kennedy, Z.R., Ibrahim, A.M.: A multi-variant approach to optimize process parameters for biodiesel extraction from rubber seed oil. Appl. Energy 88(6), 2056–2063 (2011)CrossRefGoogle Scholar
  20. 20.
    Kumar, S., Chaube, A., Jain, S.K.: Sustainability issues for promotion of Jatropha biodiesel in Indian scenario: a review. Renew. Sustain. Energy Rev. 16(2), 1089–1098 (2012)CrossRefGoogle Scholar
  21. 21.
    Atabani, A.E., Badruddin, I.A., Badarudin, A., Khayoon, M.S., Triwahyono, S.: Recent scenario and technologies to utilize non-edible oils for biodiesel production. Renew. Sustain. Energy Rev. 37, 840–851 (2014)CrossRefGoogle Scholar
  22. 22.
    Chaudhury, J., Singh, D.P., Hazra, S.K.: Sunnhemp (Crotalaria juncea L.). Monograph, Central Research Institute for Jute and Allied Fibres, pp. 1–45 (2007)Google Scholar
  23. 23.
    Du, W., Xu, Y., Liu, D.: Lipase-catalysed transesterification of soya bean oil for biodiesel production during continuous batch operation. Biotecnol. Appl. Biochem. 38(2), 103–106 (2003)CrossRefGoogle Scholar
  24. 24.
    Vicente, G., Martinez, M., Aracil, J.: Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour. Technol. 92(3), 297–305 (2004)CrossRefGoogle Scholar
  25. 25.
    Dutta, R., Sarkar, U., Mukherjee, A.: Extraction of oil from Crotalaria Juncea seeds in a modified Soxhlet apparatus: physical and chemical characterization of a prospective bio-fuel. Fuel 116, 794–802 (2014)CrossRefGoogle Scholar
  26. 26.
    Liu, X., He, H., Wang, Y., Zhu, S.: Transesterification of soybean oil to biodiesel using SrO as a solid base catalyst. Catal. Commun. 8(7), 1107–1111 (2007)CrossRefGoogle Scholar
  27. 27.
    Dias, J.M., Alvim-Ferraz, M.C.M., Almeida, M.F., Diaz, J.D.M., Polo, M.S., Utrilla, J.R.: Selection of heterogeneous catalysts for biodiesel production from animal fat. Fuel 94, 418–425 (2012)CrossRefGoogle Scholar
  28. 28.
    Helwani, Z., Othman, M.R., Aziz, N., Kim, J., Fernando, W.J.N.: Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. Appl. Catal. A. Gen. 363(1), 1–10 (2009)CrossRefGoogle Scholar
  29. 29.
    Kaur, M., Ali, A.: Lithium ion impregnated calcium oxide as nano catalyst for the biodiesel production from karanja and jatropha oils. Renew. Energy 36(11), 2866–2871 (2011)CrossRefGoogle Scholar
  30. 30.
    Zabeti, M., Daud, W.M.A.W., Aroua, M.K.: Biodiesel production using alumina-supported calcium oxide: an optimization study. Fuel Process. Technol. 91(2), 243–248 (2010)CrossRefGoogle Scholar
  31. 31.
    Hagen, J.: Industrial Catalysis: A Practical Approach. Wiley, New York (2006)Google Scholar
  32. 32.
    Rashid, U., Anwar, F., Ansari, T.M., Arif, M., Ahmad, M.: Optimization of alkaline transesterification of rice bran oil for biodiesel production using response surface methodology. J. Chem. Technol. Biotechnol. 84(9), 1364–1370 (2009)CrossRefGoogle Scholar
  33. 33.
    Demirkol, S., Aksoy, H.A., Tüter, M., Ustun, G., Sasmaz, D.A.: Optimization of enzymatic methanolysis of soybean oil by response surface methodology. J. Am. Oil Chem. Soc. 83(11), 929–932 (2006)CrossRefGoogle Scholar
  34. 34.
    Chang, S.H., Teng, T.T., Ismail, N.: Screening of factors influencing Cu (II) extraction by soybean oil-based organic solvents using fractional factorial design. J. Environ. Manag. 92(10), 2580–2585 (2011)CrossRefGoogle Scholar
  35. 35.
    Maran, J.P., Manikandan, S., Priya, B., Gurumoorthi, P.: Box–Behnken design based multi-response analysis and optimization of supercritical carbon dioxide extraction of bioactive flavonoid compounds from tea (Camellia sinensis L.) leaves. J. Food Sci. Technol. 52(1), 92–104 (2015)CrossRefGoogle Scholar
  36. 36.
    Fu, H.-Y., Xu, P.-C., Huang, G.-H., Chai, T., Hou, M., Gao, P.-F.: Effects of aeration parameters on effluent quality and membrane fouling in a submerged membrane bioreactor using Box–Behnken response surface methodology. Desalination 302, 33–42 (2012)CrossRefGoogle Scholar
  37. 37.
    Van Gerpen, J.: Cetane number testing of biodiesel. In: Proceedings of the third liquid fuels conference 1996, pp. 197–206Google Scholar
  38. 38.
    Granados, M.L., Poves, M.D.Z., Alonso, D.M., Mariscal, R., Galisteo, F.C., Moreno-Tost, R., Santamara, J., Fierro, J.L.G.: Biodiesel from sunflower oil by using activated calcium oxide. Appl. Catal. B Environ. 73(3), 317–326 (2007)CrossRefGoogle Scholar
  39. 39.
    Suryaputra, W., Winata, I., Indraswati, N., Ismadji, S.: Waste capiz (Amusium cristatum) shell as a new heterogeneous catalyst for biodiesel production. Renew. Energy 50, 795–799 (2013)CrossRefGoogle Scholar
  40. 40.
    Kouzu, M., Hidaka, J.-S.: Transesterification of vegetable oil into biodiesel catalyzed by CaO: a review. Fuel 93, 1–12 (2012)CrossRefGoogle Scholar
  41. 41.
    Boey, P.-L., Maniam, G.P., Hamid, S.A., Ali, D.M.H.: Utilization of waste cockle shell (Anadara granosa) in biodiesel production from palm olein: optimization using response surface methodology. Fuel 90(7), 2353–2358 (2011)CrossRefGoogle Scholar
  42. 42.
    Di Serio, M., Tesser, R., Pengmei, L., Santacesaria, E.: Heterogeneous catalysts for biodiesel production. Energy Fuels 22(1), 207–217 (2007)CrossRefGoogle Scholar
  43. 43.
    Chouhan, A.P.S., Sarma, A.K.: Modern heterogeneous catalysts for biodiesel production: a comprehensive review. Renew. Sustain. Energy Rev. 15(9), 4378–4399 (2011)CrossRefGoogle Scholar
  44. 44.
    Endalew, A.K., Kiros, Y., Zanzi, R.: Inorganic heterogeneous catalysts for biodiesel production from vegetable oils. Biomass Bioenergy 35(9), 3787–3809 (2011)CrossRefGoogle Scholar
  45. 45.
    Gulum, M., Bilgin, A.: Density, flash point and heating value variations of corn oil biodiesel-diesel fuel blends. Fuel Process. Technol. 134, 456–464 (2015)CrossRefGoogle Scholar
  46. 46.
    Rashid, U., Anwar, F., Moser, B.R., Ashraf, S.: Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass Bioenergy 32(12), 1202–1205 (2008)CrossRefGoogle Scholar
  47. 47.
    Rashid, U., Anwar, F., Knothe, G.: Evaluation of biodiesel obtained from cottonseed oil. Fuel Process. Technol. 90(9), 1157–1163 (2009)CrossRefGoogle Scholar
  48. 48.
    Silitonga, A.S., Masjuki, H.H., Mahlia, T.M.I., Ong, H.C., Chong, W.T., Boosroh, M.H.: Overview properties of biodiesel diesel blends from edible and non-edible feedstock. Renew. Sustain. Energy Rev. 22, 346–360 (2013)CrossRefGoogle Scholar
  49. 49.
    Rashid, U., Anwar, F., Knothe, G.: Biodiesel from Milo (Thespesia populnea L.) seed oil. Biomass Bioenergy. 35(9), 4034–4039 (2011)CrossRefGoogle Scholar
  50. 50.
    Martinez, G., Sanchez, N., Encinar, J.M., Gonzalez, J.F.: Fuel properties of biodiesel from vegetable oils and oil mixtures. Influence of methyl esters distribution. Biomass Bioenergy 63, 22–32 (2014)CrossRefGoogle Scholar
  51. 51.
    Ivanova-Petropulos, V., Mitrev, S., Stafilov, T., Markova, N., Leitner, E., Lankmayr, E., Siegmund, B.: Characterisation of traditional Macedonian edible oils by their fatty acid composition and their volatile compounds. Food Res. Int. 77(3), 506–514 (2015)Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of Chemical EngineeringJadavpur UniversityKolkataIndia

Personalised recommendations