Waste and Biomass Valorization

, Volume 7, Issue 2, pp 357–371 | Cite as

Production of Lignocellulolytic Enzymes by Microorganisms Isolated from Bulbitermes sp. Termite Gut in Solid-State Fermentation

  • Noratiqah Kamsani
  • Madihah Md. Salleh
  • Adibah Yahya
  • Chun Shiong ChongEmail author
Original Paper


Significant amounts of lignocellulosic waste biomass are produced annually. Lignocellulose degrading enzymes play a crucial role in converting the woody materials into sugars and biofuels. The aims of this work were to isolate and characterise the microorganisms from Bulbitermes sp. termite gut with the ability to produce lignocellulolytic enzymes by using forest residues of saw dust as substrate in solid-state fermentation system. Four of the microorganisms (A1, B1, B2, and Br3) with highest lignocellulolytic enzyme activity, which identified as Aspergillus sp., Bacillus sp., Bacillus sp. and Brevibacillus sp., respectively, were selected for characterization. Aspergillus sp. A1 showed highest activities of lignin peroxidase (729.12 U/g) and β-glucosidase (22.97 U/g). Highest activity of endoglucanase (138.77 U/g) and manganese peroxidase (47.73 U/g) were observed in Bacillus sp. B1. The Bacillus sp. B2 produced highest activities of exoglucanase (32.16 U/g) and laccase (71.18 U/g). The highest xylanase (104.96 U/g) activity was observed in Brevibacillus sp. Br3. The production of enzymes particularly for endoglucanase, β-glucosidase, xylanase, lignin peroxidase and laccase were approximate 17–93 % higher in co-culture compared to single culture. The findings suggested that saw dust can be used as a cheap renewable raw material for production of lignocellulolytic enzymes. The present study also indicates that the fungal-bacterial co-culture could be a good alternative for the enzymes production.


Termite gut Solid-state fermentation Lignocellulolytic enzymes Untreated sawdust Co-culture 



We thank Maricel Cuevas David, Universiti Tun Hussein Onn Malaysia, for the identification of the termite’s genus. The first author (Noratiqah Kamsani) would like to extend her gratitude to the Ministry of Education, Malaysia (MOE) for awarding MyBrain 15 (MyPhD) scholarship. The Research University Grant (GUP) (Q.J130000.2545.05H13) by Universiti Teknologi Malaysia financially supported this work. Dr. Ang Siow Kuang and Ummirul Mukminin Kahar are acknowledged for fruitful discussions.

Supplementary material

12649_2015_9453_MOESM1_ESM.docx (463 kb)
Supplementary material 1 (DOCX 463 kb)


  1. 1.
    Thomas, L., Larroche, C., Pandey, A.: Current developments in solid-state fermentation. Biochem. Eng. J. 81, 146–161 (2013)CrossRefGoogle Scholar
  2. 2.
    Singhania, R.R., Sukumaran, R.K., Patel, A.K., Larroche, C., Pandey, A.: Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme Microb. Technol. 46(7), 541–549 (2010)CrossRefGoogle Scholar
  3. 3.
    Dhillon, G.S., Brar, S.K., Kaur, S., Metahni, S., M’hamdi, N.: Lactoserum as a moistening medium and crude inducer for fungal cellulase and hemicellulase induction through solid-state fermentation of apple pomace. Biomass Bioenergy 41, 165–174 (2012)CrossRefGoogle Scholar
  4. 4.
    Yoon, L.W., Ang, T.N., Ngoh, G.C., Chua, A.S.M.: Fungal solid-state fermentation and various methods of enhancement in cellulase production. Biomass Bioenergy 67, 319–338 (2014)CrossRefGoogle Scholar
  5. 5.
    Alam, M.Z., Mamun, A.A., Qudsieh, I.Y., Muyibi, S.A., Salleh, H.M., Omar, N.M.: Solid state bioconversion of oil palm empty fruit bunches for cellulase enzyme production using a rotary drum bioreactor. Biochem. Eng. J. 46(1), 61–64 (2009)CrossRefGoogle Scholar
  6. 6.
    Jabasingh, S.A., Nachiyar, C.V.: Utilization of pretreated bagasse for the sustainable bioproduction of cellulase by Aspergillus nidulans MTCC344 using response surface methodology. Ind. Crop. Prod. 34(3), 1564–1571 (2011)CrossRefGoogle Scholar
  7. 7.
    Bansal, N., Tewari, R., Soni, R., Soni, S.K.: Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag. 32(7), 1341–1346 (2012)CrossRefGoogle Scholar
  8. 8.
    Pandey, A.: Solid-state fermentation. Biochem. Eng. J. 13(2), 81–84 (2003)CrossRefGoogle Scholar
  9. 9.
    Singhania, R.R., Patel, A.K., Soccol, C.R., Pandey, A.: Recent advances in solid-state fermentation. Biochem. Eng. J. 44(1), 13–18 (2009)CrossRefGoogle Scholar
  10. 10.
    Gutierrez-Correa, M., Tengerdy, R.P.: Production of cellulase on sugar cane bagasse by fungal mixed culture solid substrate fermentation. Biotechnol. Lett. 19(7), 665–667 (1997)CrossRefGoogle Scholar
  11. 11.
    Ang, S., Shaza, E., Adibah, Y., Suraini, A., Madihah, M.: Production of cellulases and xylanase by Aspergillus fumigatus SK1 using untreated oil palm trunk through solid state fermentation. Process Biochem. 48(9), 1293–1302 (2013)CrossRefGoogle Scholar
  12. 12.
    Mekhilef, S., Saidur, R., Safari, A., Mustaffa, W.: Biomass energy in Malaysia: current state and prospects. Renew. Sustain. Energy Rev. 15(7), 3360–3370 (2011)CrossRefGoogle Scholar
  13. 13.
    Liu, J., Yuan, X., Zeng, G., Shi, J., Chen, S.: Effect of biosurfactant on cellulase and xylanase production by Trichoderma viride in solid substrate fermentation. Process Biochem. 41(11), 2347–2351 (2006)CrossRefGoogle Scholar
  14. 14.
    Poorna, C.A., Prema, P.: Production of cellulase-free endoxylanase from novel alkalophilic thermotolerent Bacillus pumilus by solid-state fermentation and its application in wastepaper recycling. Bioresour. Technol. 98(3), 485–490 (2007)CrossRefGoogle Scholar
  15. 15.
    Ramin, M., Alimon, A., Abdullah, N.: Identification of cellulolytic bacteria isolated from the termite Coptotermes curvignathus (Holmgren). J. Rapid Methods Autom. Microbiol. 17(1), 103–116 (2009)CrossRefGoogle Scholar
  16. 16.
    Mattéotti, C., Bauwens, J., Brasseur, C., Tarayre, C., Thonart, P., Destain, J., Francis, F., Haubruge, E., De Pauw, E., Portetelle, D.: Identification and characterization of a new xylanase from Gram-positive bacteria isolated from termite gut (Reticulitermes santonensis). Protein Expr. Purif. 83(2), 117–127 (2012)CrossRefGoogle Scholar
  17. 17.
    Le Roes-Hill, M., Rohland, J., Burton, S.: Actinobacteria isolated from termite guts as a source of novel oxidative enzymes. Antonie Van Leeuwenhoek 100(4), 589–605 (2011)CrossRefGoogle Scholar
  18. 18.
    Dheeran, P., Nandhagopal, N., Kumar, S., Jaiswal, Y.K., Adhikari, D.K.: A novel thermostable xylanase of Paenibacillus macerans IIPSP3 isolated from the termite gut. J. Ind. Microbiol. Biotechnol. 39(6), 851–860 (2012)CrossRefGoogle Scholar
  19. 19.
    Kumar, A., Gaind, S., Nain, L.: Evaluation of thermophilic fungal consortium for paddy straw composting. Biodegradation 19(3), 395–402 (2008)CrossRefGoogle Scholar
  20. 20.
    Wang, X.-J., Bai, J.-G., Liang, Y.-X.: Optimization of multienzyme production by two mixed strains in solid-state fermentation. Appl. Microbiol. Biotechnol. 73(3), 533–540 (2006)CrossRefGoogle Scholar
  21. 21.
    Dashtban, M., Schraft, H., Qin, W.: Fungal bioconversion of lignocellulosic residues; opportunities & perspectives. Int. J. Biol. Sci. 5(6), 578 (2009)CrossRefGoogle Scholar
  22. 22.
    Dhillon, G.S., Oberoi, H.S., Kaur, S., Bansal, S., Brar, S.K.: Value-addition of agricultural wastes for augmented cellulase and xylanase production through solid-state tray fermentation employing mixed-culture of fungi. Ind. Crop. Prod. 34(1), 1160–1167 (2011)CrossRefGoogle Scholar
  23. 23.
    Brijwani, K., Oberoi, H.S., Vadlani, P.V.: Production of a cellulolytic enzyme system in mixed-culture solid-state fermentation of soybean hulls supplemented with wheat bran. Process Biochem. 45(1), 120–128 (2010)CrossRefGoogle Scholar
  24. 24.
    Kolasa, M., Ahring, B.K., Lübeck, P.S., Lübeck, M.: Co-cultivation of Trichoderma reesei RutC30 with three black Aspergillus strains facilitates efficient hydrolysis of pretreated wheat straw and shows promises for on-site enzyme production. Bioresour. Technol. 169, 143–148 (2014)CrossRefGoogle Scholar
  25. 25.
    Schäfer, A., Konrad, R., Kuhnigk, T., Kämpfer, P., Hertel, H., König, H.: Hemicellulose degrading bacteria and yeasts from the termite gut. J. Appl. Bacteriol. 80(5), 471–478 (1996)CrossRefGoogle Scholar
  26. 26.
    Mandels, M., Weber, J.: The production of cellulases. Adv. Chem. Ser. 95, 391–414 (1969)CrossRefGoogle Scholar
  27. 27.
    Pointing, S.B.: Qualitative methods for the determination of lignocellulolytic enzyme production by tropical fungi. Fungal Divers. 2, 17–33 (1999)Google Scholar
  28. 28.
    Ang, S., Yahya, A., Suraini, A.-A., Salleh, M.M.: Isolation, screening and identification of potential cellulolytic and xylanolytic producers for biodegradation of untreated oil palm trunk and its application in saccharification of lemon grass leaves. Prep. Biochem. Biotechnol. 45, 279–305 (2014)CrossRefGoogle Scholar
  29. 29.
    Weisburg, W.G., Barns, S.M., Pelletier, D.A., Lane, D.J.: 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173(2), 697–703 (1991)Google Scholar
  30. 30.
    Deswal, D., Khasa, Y.P., Kuhad, R.C.: Optimization of cellulase production by a brown rot fungus Fomitopsis sp. RCK2010 under solid state fermentation. Bioresour. Technol. 102(10), 6065–6072 (2011)CrossRefGoogle Scholar
  31. 31.
    Kim, O.-S., Cho, Y.-J., Lee, K., Yoon, S.-H., Kim, M., Na, H., Park, S.-C., Jeon, Y.S., Lee, J.-H., Yi, H.: Introducing EzTaxon-e: a prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62(Pt 3), 716–721 (2012)CrossRefGoogle Scholar
  32. 32.
    Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., Kumar, S.: MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28(10), 2731–2739 (2011)CrossRefGoogle Scholar
  33. 33.
    Hu, H., Van den Brink, J., Gruben, B., Wösten, H., Gu, J.-D., De Vries, R.: Improved enzyme production by co-cultivation of Aspergillus niger and Aspergillus oryzae and with other fungi. Int. Biodeterior. Biodegrad. 65(1), 248–252 (2011)CrossRefGoogle Scholar
  34. 34.
    Miller, G.L.: Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31(3), 426–428 (1959)CrossRefGoogle Scholar
  35. 35.
    Wood, T.M., Bhat, K.M.: Methods for measuring cellulase activities. Methods Enzymol. 160, 87–112 (1988)CrossRefGoogle Scholar
  36. 36.
    Tien, M., Kirk, T.K.: Lignin-degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc. Natl. Acad. Sci. 81(8), 2280–2284 (1984)CrossRefGoogle Scholar
  37. 37.
    Carabajal, M., Levin, L., Albertó, E., Lechner, B.: Effect of co-cultivation of two Pleurotus species on lignocellulolytic enzyme production and mushroom fructification. Int. Biodeterior. Biodegrad. 66(1), 71–76 (2012)CrossRefGoogle Scholar
  38. 38.
    Glenn, J.K., Gold, M.H.: Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch. Biochem. Biophys. 242(2), 329–341 (1985)CrossRefGoogle Scholar
  39. 39.
    Bourbonnais, R., Paice, M., Reid, I., Lanthier, P., Yaguchi, M.: Lignin oxidation by laccase isozymes from Trametes versicolor and role of the mediator 2, 2′-azinobis (3-ethylbenzthiazoline-6-sulfonate) in kraft lignin depolymerization. Appl. Environ. Microbiol. 61(5), 1876–1880 (1995)Google Scholar
  40. 40.
    Tarayre, C., Brognaux, A., Bauwens, J., Brasseur, C., Mattéotti, C., Millet, C., Destain, J., Vandenbol, M., Portetelle, D., De Pauw, E.: Isolation of amylolytic, xylanolytic, and cellulolytic microorganisms extracted from the gut of the termite Reticulitermes santonensis by means of a micro-aerobic atmosphere. World J. Microbiol. Biotechnol. 30(5), 1655–1660 (2014)CrossRefGoogle Scholar
  41. 41.
    Wenzel, M., Schönig, I., Berchtold, M., Kämpfer, P., König, H.: Aerobic and facultatively anaerobic cellulolytic bacteria from the gut of the termite Zootermopsis angusticollis. J. Appl. Microbiol. 92(1), 32–40 (2002)CrossRefGoogle Scholar
  42. 42.
    Gessesse, A., Mamo, G.: High-level xylanase production by an alkaliphilic Bacillus sp. by using solid-state fermentation. Enzyme Microb. Technol. 25(1), 68–72 (1999)CrossRefGoogle Scholar
  43. 43.
    Gessesse, A., Gashe, B.: Production of alkaline xylanase by an alkaliphilic Bacillus sp. isolated from an alkaline soda lake. J. Appl. Microbiol. 83(4), 402–406 (1997)CrossRefGoogle Scholar
  44. 44.
    Prasad, P., Tanuja, Bedi, S.: Isolation and characterization of cellulose degrading Brevibacillus brevis and optimization of its cellulase activity at different physico-chemical parameters. Res. J. Biotechnol. 8(5), 66–71 (2013)Google Scholar
  45. 45.
    Li, A.-H., Lin, C.-W., Tran, D.-T.: Optimizing the response surface for producing ethanol from avicel by Brevibacillus strain AHPC8120. J. Taiwan Inst. Chem. Eng. 42(5), 787–792 (2011)CrossRefGoogle Scholar
  46. 46.
    Gutierrez-Correa, M., Portal, L., Moreno, P., Tengerdy, R.P.: Mixed culture solid substrate fermentation of Trichoderma reesei with Aspergillus niger on sugar cane bagasse. Bioresour. Technol. 68(2), 173–178 (1999)CrossRefGoogle Scholar
  47. 47.
    Singhania, R.R., Patel, A.K., Sukumaran, R.K., Larroche, C., Pandey, A.: Role and significance of beta-glucosidases in the hydrolysis of cellulose for bioethanol production. Bioresour. Technol. 127, 500–507 (2013)CrossRefGoogle Scholar
  48. 48.
    Lin, H., Wang, B., Zhuang, R., Zhou, Q., Zhao, Y.: Artificial construction and characterization of a fungal consortium that produces cellulolytic enzyme system with strong wheat straw saccharification. Bioresour. Technol. 102(22), 10569–10576 (2011)CrossRefGoogle Scholar
  49. 49.
    Gutierrez-Correa, M., Tengerdy, R.P.: Xylanase production by fungal mixed culture solid substrate fermentation on sugar cane bagasse. Biotechnol. Lett. 20(1), 45–47 (1998)CrossRefGoogle Scholar
  50. 50.
    Ma, K., Ruan, Z.: Production of a lignocellulolytic enzyme system for simultaneous bio-delignification and saccharification of corn stover employing co-culture of fungi. Bioresour. Technol. 175, 586–593 (2015)CrossRefGoogle Scholar
  51. 51.
    Gupta, V., Garg, S., Capalash, N., Gupta, N., Sharma, P.: Production of thermo-alkali-stable laccase and xylanase by co-culturing of Bacillus sp. and B. halodurans for biobleaching of kraft pulp and deinking of waste paper. Bioprocess Biosyst. Eng. 38(5), 947–956 (2015)CrossRefGoogle Scholar
  52. 52.
    Chi, Y., Hatakka, A., Maijala, P.: Can co-culturing of two white-rot fungi increase lignin degradation and the production of lignin-degrading enzymes? Int. Biodeterior. Biodegrad. 59(1), 32–39 (2007)CrossRefGoogle Scholar
  53. 53.
    Parani, K., Eyini, M.: Production of ligninolytic enzymes during solid state fermentation of coffee pulp by selected fungi. Sci. Res. Rep. 2(3), 202–209 (2012)Google Scholar
  54. 54.
    Yasmeen, Q., Asgher, M., Sheikh, M.A., Nawaz, H.: Optimization of ligninolytic enzymes production through response surface methodology. BioResources 8(1), 944–968 (2013)CrossRefGoogle Scholar
  55. 55.
    Zhang, S., Jiang, M., Zhou, Z., Zhao, M., Li, Y.: Selective removal of lignin in steam-exploded rice straw by Phanerochaete chrysosporium. Int. Biodeterior. Biodegrad. 75, 89–95 (2012)CrossRefGoogle Scholar
  56. 56.
    Singh, D., Zeng, J., Laskar, D.D., Deobald, L., Hiscox, W.C., Chen, S.: Investigation of wheat straw biodegradation by Phanerochaete chrysosporium. Biomass Bioenergy 35(3), 1030–1040 (2011)CrossRefGoogle Scholar
  57. 57.
    Arora, D.S., Chander, M., Gill, P.K.: Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. Int. Biodeterior. Biodegrad. 50(2), 115–120 (2002)CrossRefGoogle Scholar
  58. 58.
    Liew, C., Husaini, A., Hussain, H., Muid, S., Liew, K., Roslan, H.: Lignin biodegradation and ligninolytic enzyme studies during biopulping of Acacia mangium wood chips by tropical white rot fungi. World J. Microbiol. Biotechnol. 27(6), 1457–1468 (2011)CrossRefGoogle Scholar
  59. 59.
    Ruqayyah, T.I., Jamal, P., Alam, M.Z., Mirghani, M.E.S.: Biodegradation potential and ligninolytic enzyme activity of two locally isolated Panus tigrinus strains on selected agro-industrial wastes. J. Environ. Manag. 118, 115–121 (2013)CrossRefGoogle Scholar
  60. 60.
    Couto, S.R., Domínguez, A., Sanroman, A.: Utilisation of lignocellulosic wastes for lignin peroxidase production by semi-solid-state cultures of Phanerochaete chrysosporium. Biodegradation 12(5), 283–289 (2001)CrossRefGoogle Scholar
  61. 61.
    Husaini, A., Fisol, F.A., Yun, L.C., Hussain, M.H., Roslan, H.A.: Lignocellulolytic enzymes produced by tropical white rot fungi during biopulping of Acacia mangium wood chips. J. Biochem. Technol. 3(2), 245–250 (2011)Google Scholar
  62. 62.
    Kuhar, F., Castiglia, V., Levin, L.: Enhancement of laccase production and malachite green decolorization by co-culturing Ganoderma lucidum and Trametes versicolor in solid-state fermentation. Int. Biodeterior. Biodegrad. 104, 238–243 (2015)CrossRefGoogle Scholar
  63. 63.
    Janusz, G., Czuryło, A., Frąc, M., Rola, B., Sulej, J., Pawlik, A., Siwulski, M., Rogalski, J.: Laccase production and metabolic diversity among Flammulina velutipes strains. World J. Microbiol. Biotechnol. 31(1), 121–133 (2015)CrossRefGoogle Scholar
  64. 64.
    Chang, Y.-C., Choi, D., Takamizawa, K., Kikuchi, S.: Isolation of Bacillus sp. strains capable of decomposing alkali lignin and their application in combination with lactic acid bacteria for enhancing cellulase performance. Bioresour. Technol. 152, 429–436 (2014)CrossRefGoogle Scholar
  65. 65.
    Duan, X., Liu, S., Zhang, W., Zhang, Q., Gao, P.: Volumetric productivity improvement for endoglucanase of Trichoderma pseudokoingii S-38. J. Appl. Microbiol. 96(4), 772–776 (2004)CrossRefGoogle Scholar
  66. 66.
    Ma, F., Wang, J., Zeng, Y., Yu, H., Yang, Y., Zhang, X.: Influence of the co-fungal treatment with two white rot fungi on the lignocellulosic degradation and thermogravimetry of corn stover. Process Biochem. 46(9), 1767–1773 (2011)CrossRefGoogle Scholar
  67. 67.
    Dwivedi, P., Vivekanand, V., Pareek, N., Sharma, A., Singh, R.P.: Co-cultivation of mutant Penicillium oxalicum SAU E-3.510 and Pleurotus ostreatus for simultaneous biosynthesis of xylanase and laccase under solid-state fermentation. New Biotechnol. 28(6), 616–626 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Noratiqah Kamsani
    • 1
  • Madihah Md. Salleh
    • 1
    • 2
  • Adibah Yahya
    • 1
    • 2
  • Chun Shiong Chong
    • 1
    • 2
    Email author
  1. 1.Faculty of Biosciences and Medical EngineeringUniversiti Teknologi MalaysiaSkudaiMalaysia
  2. 2.ENVBIO Research Group, Resource SustainabilityUniversiti Teknologi MalaysiaSkudaiMalaysia

Personalised recommendations