Skip to main content
Log in

Characterizing Antioxidant Potential of Alcoholic Extracts of Rice Husk and Saw Dust for Oxidative Stability of Base Lubricating Oil Using Physico-chemical Properties

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The thermo-oxidative stability of the mineral base oil (MBO) was examined by subjecting it to artificial aging process performed at different temperatures (25, 50, 100, 150, and 200 °C) and times (00–24 h in cycles of 06 h). The MBO samples additized with the antioxidants under study were then oxidized under the optimized temperatures and time. The antioxidants were used in concentration range of 1–3 % (w/w). The extent of the degradation was estimated from the changes in the physico-chemical properties i.e. kinematic viscosity determined at 40 and 100 °C, viscosity index, viscosity ratio, Conradson carbon residue, total acid number and iodine number in comparison with the un-oxidized plain oil. The results inferred that the antioxidants used in concentration of 3 % proved to be effective in avoiding the thermo-oxidative degradation of the MBO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Khorramian, B.A., Lyer, G.R., Kodali, S., Natarajan, P., Tupil, R.: Review of antiwear additives for crankcase oils. Wear 169, 87–95 (1993)

    Article  Google Scholar 

  2. Webster, R.L., Evans, D.J., Marriott, P.J.: Detailed chemical analysis using multidimensional gas chromatography–mass spectrometry and bulk properties of low-temperature oxidized jet fuels. Energy Fuels 29, 2059–2066 (2015)

    Article  Google Scholar 

  3. Tripathi, A.K., Vinu, R.: Characterization of thermal stability of synthetic and semi-synthetic engine oils. Lubricants 3, 54–79 (2015)

    Article  Google Scholar 

  4. Nassar, A.M., Ahmed, N.S., Abdel-Hameed, H.S., El-Kafrawy, A.F.: Synthesis and evaluation of ashless detergent/dispersant additives for lubricating engine oil. Tribol. Int. (2015). doi:10.1016/j.triboint.2015.08.033

    Google Scholar 

  5. Singh, S.K., Agarwal, A.K., Sharma, M., Srivastava, D.K.: Experimental investigation of the effect of exhaust gas recirculation on lubricating oil degradation and wear of a compression ignition engine. J. Eng. Gas Turbine Power 128, 921–927 (2006)

    Article  Google Scholar 

  6. Singh, S.K., Agarwal, A.K., Sharma, M.: Experimental investigations of heavy metal addition in lubricating oil and soot deposition in an EGR operated engine. Appl. Therm. Eng. 26, 259–266 (2006)

    Article  Google Scholar 

  7. Owrang, F., Mattsson, H., Olsson, J., Pedersen, J.: Investigation of oxidation of a mineral and a synthetic engine oil. Thermochim. Acta 413, 241–248 (2004)

    Article  Google Scholar 

  8. Adhvaryu, A., Erhan, S.Z., Sahoo, S.K., Singh, I.D.: Thermo-oxidative stability studies on some new generation API group II and III base oils. Fuel 81, 785–791 (2002)

    Article  Google Scholar 

  9. Smiechowski, M.F., Lvovich, V.F.: Characterization of non-aqueous dispersions of carbon black nanoparticles by electrochemical impedance spectroscopy. J. Electroanal. Chem. 57, 67–78 (2005)

    Article  Google Scholar 

  10. Qu, J., Bansal, D.G., Yu, B., Howe, J.Y., Luo, H., Dai, S., Smolenski, D.J.: Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl. Mater. Interfaces 4, 997–1002 (2012)

    Article  Google Scholar 

  11. Qi, X., Lu, L., Jia, Z., Yang, Y., Liu, H.: Comparative tribological properties of magnesium hexasilicate and serpentine powder as lubricating oil additives under high temperature. Tribol. Int. 49, 53–57 (2012)

    Article  Google Scholar 

  12. Mosey, N.J., Müser, M.H., Woo, T.K.: Molecular mechanisms for the functionality of lubricant additives. Science 307, 1612–1615 (2005)

    Article  Google Scholar 

  13. Luo, T., Wei, X., Huang, X., Huang, L., Yang, F.: Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceram. Int. 40, 7143–7149 (2014)

    Article  Google Scholar 

  14. Pejaković, V., Kronberger, M., Kalin, M.: Influence of temperature on tribological behaviour of ionic liquids as lubricants and lubricant additives. Lubr. Sci. 26, 07–115 (2014)

    Google Scholar 

  15. Abdullah, M.I.H.C., Abdollah, M.F.B., Amiruddin, H., Tamaldin, N., Nuri, N.R.M.: Optimization of tribological performance of hBN/AL2O3 nanoparticles as engine oil additives. Procedia Eng. 68, 313–319 (2013)

    Article  Google Scholar 

  16. Gourgouillon, D., Schrive, L., Sarrade, S., Rios, G.M.: An environmentally friendly process for the regeneration of used oils. Environ. Sci. Technol. 34, 3469–3473 (2000)

    Article  Google Scholar 

  17. Hamad, A., Al-Zubaidy, E., Fayed, M.E.: Used lubricating oil recycling using hydrocarbon solvents. J. Environ. Manage. 74, 153–159 (2005)

    Article  Google Scholar 

  18. Kovalenko, K.V., Krivokhizha, S.V., Rakaeva, G.V.: Quality control of petroleum oils with additives. Chem. Technol. Fuels Oils 43, 64–69 (2007)

    Article  Google Scholar 

  19. Li, W., Jiang, C., Chao, M., Wang, X.: Natural garlic oil as a high-performance, environmentally friendly, extreme pressure additive in lubricating oils. ACS Sustain. Chem. Eng. 2, 798–803 (2014)

    Article  Google Scholar 

  20. Karmakar, G., Ghosh, P.: Green additives for lubricating oil. ACS Sustain. Chem. Eng. 1, 1364–1370 (2013)

    Article  Google Scholar 

  21. Yen, G.C., Wu, J.Y.: Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae. Food Chem. 65(3), 375–379 (1999)

    Article  Google Scholar 

  22. IP standard test methods for analysis and testing of petroleum and related products, and British Standard 2000 Parts, Energy Institute (2014)

  23. Erhan, S.Z., Sharma, B.K., Perez, J.M.: Oxidation and low temperature stability of vegetable oil-based lubricants. Ind. Crops Prod. 24(3), 292–299 (2006)

    Article  Google Scholar 

  24. Cerny, J., Strnad, Z., Sebor, G.: Composition and oxidation stability of SAE 15W-40 engine oils. Tribol. Int. 34(2), 127–134 (2001)

    Article  Google Scholar 

  25. Sequeira, A.: Lubricant Base Oil and Wax Processing. CRC Press, Boca Raton (1994)

    Google Scholar 

  26. Duangkaewmanee, S., Petsom, A.: Synergistic and antagonistic effects on oxidation stability of antioxidants in a synthetic ester based oil. Tribol. Int. 44(3), 266–271 (2011)

    Article  Google Scholar 

  27. Egharevba, F., Maduako, A.U.: Assessment of oxidation in automotive crankcase lube oil: effects of metal and water activity. Ind. Eng. Chem. Res. 41(14), 3473–3481 (2002)

    Article  Google Scholar 

  28. Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M.: Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 28, 162–169 (2014)

    Article  Google Scholar 

  29. Qian, Y., Zhang, J., Wang, J.: Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation. Biores. Technol. 174, 95–102 (2014)

    Article  Google Scholar 

  30. Heo, H.S., Park, H.J., Park, Y.K., Ryu, C., Suh, D.J., Suh, Y.W., Kim, S.S.: Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Biores. Technol. 101(1), S91–S96 (2010)

    Article  Google Scholar 

  31. Abu Bakar, M.S., Titiloye, J.O.: Catalytic pyrolysis of rice husk for bio-oil production. J. Anal. Appl. Pyrol. 103, 362–368 (2013)

    Article  Google Scholar 

  32. Lee, S.C., Kim, J.H., Jeong, S.M., Kim, D.R., Ha, J.U., Nam, K.C., Ahn, D.U.: Effect of far-infrared radiation on the antioxidant activity of rice hulls. J. Agric. Food Chem. 51, 4400–4403 (2003)

    Article  Google Scholar 

  33. Iqbal, S., Bhanger, M.I., Anwar, F.: Antioxidant properties and components of some commercially available varieties of rice bran in Pak. Food Chem. 93, 265–272 (2005)

    Article  Google Scholar 

  34. Pinelo, M., Rubilar, M., Sineiro, J., Nunez, M.J.: Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem. 85(2), 267–273 (2004)

    Article  Google Scholar 

  35. Saha, J.B.T., Abia, D., Dumarçay, S., Ndikontar, M.K., Gérardin, P., Ngamveng Noah, J., Perrin, D.: Antioxidant activities, total phenolic contents and chemical compositions of extracts from four Cameroonian woods: Padouk (Pterocarpus soyauxii Taubb), tali (Erythrophleum suaveolens), moabi (Baillonella toxisperma), and movingui (Distemonanthus benthamianus). Ind. Crops Prod. 41, 71–77 (2013)

    Article  Google Scholar 

  36. Wang, S.S.: Road tests of oil condition sensor and sensing technique. Sens. Actuators B Chem. 73(2), 106–111 (2001)

    Article  Google Scholar 

  37. Basu, A., Berndorfer, A., Buelna, C., Campbell, J., Ismail, K., Lin, Y., Wang, S.S.: “Smart Sensing” of Oil Degradation and Oil Level Measurements in Gasoline Engines (No. 2000-01-1366). SAE Technical Paper (2000)

  38. Cerny, J., Strnad, Z., Sebor, G.: Composition and oxidation stability of SAE 15W-40 engine oils. Tribol. Int. 34(2), 127–134 (2001)

    Article  Google Scholar 

  39. Adhvaryu, A., Erhan, S.Z., Liu, Z.S., Perez, J.M.: Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochim. Acta 364(1), 87–97 (2000)

    Article  Google Scholar 

  40. Jain, M.R., Sawant, R., Paulmer, R.D.A., Ganguli, D., Vasudev, G.: Evaluation of thermo-oxidative characteristics of gear oils by different techniques: effect of antioxidant chemistry. Thermochim. Acta 435(2), 72–175 (2005)

    Article  Google Scholar 

  41. Santos, J.C.O., Santos, I.M.G.D., Souza, A.G., Sobrinho, E.V., Fernandes Jr, V.J., Silva, A.J.N.: Thermoanalytical and rheological characterization of automotive mineral lubricants after thermal degradation. Fuel 83(17), 2393–2399 (2004)

    Article  Google Scholar 

  42. Blaine, S., Savage, P.E.: Reaction pathways in lubricant degradation. 3. Reaction model for n-hexadecane autoxidation. Ind. Eng. Chem. Res. 31(1), 69–75 (1992)

    Article  Google Scholar 

  43. Ohgake, R., Sunami, M., Yoshida, T., Watanabe, H.: ASTM Special Technical Publication, pp. 32–33 (1989)

  44. Ossia, C.V., Han, H.G., Kong, H.: Tribological evaluation of selected biodegradable oils with long chain fatty acids. Ind. Lubr. Tribol. 62(1), 26–31 (2010)

    Article  Google Scholar 

  45. Shrivastava, S.P.: Base Oil: Quality Trends and Technology Option for Their Production. In: International Symposium on Fuels and Lubricants, vol. 69. Allied Publishers, New Dheli (2000)

  46. Rasberger, M.: Oxidative degradation and stabilisation of mineral oil based lubricants. In: Chemistry and Technology of Lubricants, pp. 98–143. Springer, Netherlands. Ind. Eng. Chem. Res. 31(1), 69–75 (1997)

  47. Araújo, S.V., Luna, F.M.T., Rola Jr, E.M., Azevedo, D., Cavalcante Jr, C.L.: A rapid method for evaluation of the oxidation stability of castor oil FAME: influence of antioxidant type and concentration. Fuel Process. Technol. 90(10), 1272–1277 (2009)

    Article  Google Scholar 

  48. Bakunin, V.N., Parenago, O.P.: A mechanism of thermo-oxidative degradation of polyol ester lubricants. J. Synth. Lubr. 9(2), 127–143 (1992)

    Article  Google Scholar 

  49. Barman, B.N.: Behavioral differences between group I and group II base oils during thermo-oxidative degradation. Tribol. Int. 35(1), 15–26 (2002)

    Article  MathSciNet  Google Scholar 

  50. Pedersen, K.S., Rønningsen, H.P.: Influence of wax inhibitors on wax appearance temperature, pour point, and viscosity of waxy crude oils. Energy Fuels 17(2), 321–328 (2003)

    Article  Google Scholar 

  51. Erhan, S.Z., Sharma, B.K., Liu, Z., Adhvaryu, A.: Lubricant base stock potential of chemically modified vegetable oils. J. Agric. Food Chem. 56(19), 8919–8925 (2008)

    Article  Google Scholar 

  52. Okoye, I.P., Onwe, O.J., Akaranta, O.: The effect of the natural antioxidant quercetin on the oxidation stability of lubricating oil. Sci. Afr. 8(2), 26–30 (2009)

    Google Scholar 

  53. Alexsandra de Sousa Rios, M., Sales, F.A.M., Mazzetto, S.E.: Study of antioxidant properties of 5-n-pentadecyl-2-tert-amylphenol. Energy Fuels 23(5), 2517–2522 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Imtiaz Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmad, I., Ullah, J., Ishaq, M. et al. Characterizing Antioxidant Potential of Alcoholic Extracts of Rice Husk and Saw Dust for Oxidative Stability of Base Lubricating Oil Using Physico-chemical Properties. Waste Biomass Valor 7, 331–341 (2016). https://doi.org/10.1007/s12649-015-9449-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9449-1

Keywords