Waste and Biomass Valorization

, Volume 7, Issue 2, pp 331–341 | Cite as

Characterizing Antioxidant Potential of Alcoholic Extracts of Rice Husk and Saw Dust for Oxidative Stability of Base Lubricating Oil Using Physico-chemical Properties

  • Imtiaz AhmadEmail author
  • Jan Ullah
  • M. Ishaq
  • Hizbullah Khan
  • Razia Khan
  • Waqas Ahmad
  • Kashif Gul
Original Paper


The thermo-oxidative stability of the mineral base oil (MBO) was examined by subjecting it to artificial aging process performed at different temperatures (25, 50, 100, 150, and 200 °C) and times (00–24 h in cycles of 06 h). The MBO samples additized with the antioxidants under study were then oxidized under the optimized temperatures and time. The antioxidants were used in concentration range of 1–3 % (w/w). The extent of the degradation was estimated from the changes in the physico-chemical properties i.e. kinematic viscosity determined at 40 and 100 °C, viscosity index, viscosity ratio, Conradson carbon residue, total acid number and iodine number in comparison with the un-oxidized plain oil. The results inferred that the antioxidants used in concentration of 3 % proved to be effective in avoiding the thermo-oxidative degradation of the MBO.


Lubricating oil Degradation Additives Biomass Physico-chemical properties 


  1. 1.
    Khorramian, B.A., Lyer, G.R., Kodali, S., Natarajan, P., Tupil, R.: Review of antiwear additives for crankcase oils. Wear 169, 87–95 (1993)CrossRefGoogle Scholar
  2. 2.
    Webster, R.L., Evans, D.J., Marriott, P.J.: Detailed chemical analysis using multidimensional gas chromatography–mass spectrometry and bulk properties of low-temperature oxidized jet fuels. Energy Fuels 29, 2059–2066 (2015)CrossRefGoogle Scholar
  3. 3.
    Tripathi, A.K., Vinu, R.: Characterization of thermal stability of synthetic and semi-synthetic engine oils. Lubricants 3, 54–79 (2015)CrossRefGoogle Scholar
  4. 4.
    Nassar, A.M., Ahmed, N.S., Abdel-Hameed, H.S., El-Kafrawy, A.F.: Synthesis and evaluation of ashless detergent/dispersant additives for lubricating engine oil. Tribol. Int. (2015). doi: 10.1016/j.triboint.2015.08.033 Google Scholar
  5. 5.
    Singh, S.K., Agarwal, A.K., Sharma, M., Srivastava, D.K.: Experimental investigation of the effect of exhaust gas recirculation on lubricating oil degradation and wear of a compression ignition engine. J. Eng. Gas Turbine Power 128, 921–927 (2006)CrossRefGoogle Scholar
  6. 6.
    Singh, S.K., Agarwal, A.K., Sharma, M.: Experimental investigations of heavy metal addition in lubricating oil and soot deposition in an EGR operated engine. Appl. Therm. Eng. 26, 259–266 (2006)CrossRefGoogle Scholar
  7. 7.
    Owrang, F., Mattsson, H., Olsson, J., Pedersen, J.: Investigation of oxidation of a mineral and a synthetic engine oil. Thermochim. Acta 413, 241–248 (2004)CrossRefGoogle Scholar
  8. 8.
    Adhvaryu, A., Erhan, S.Z., Sahoo, S.K., Singh, I.D.: Thermo-oxidative stability studies on some new generation API group II and III base oils. Fuel 81, 785–791 (2002)CrossRefGoogle Scholar
  9. 9.
    Smiechowski, M.F., Lvovich, V.F.: Characterization of non-aqueous dispersions of carbon black nanoparticles by electrochemical impedance spectroscopy. J. Electroanal. Chem. 57, 67–78 (2005)CrossRefGoogle Scholar
  10. 10.
    Qu, J., Bansal, D.G., Yu, B., Howe, J.Y., Luo, H., Dai, S., Smolenski, D.J.: Antiwear performance and mechanism of an oil-miscible ionic liquid as a lubricant additive. ACS Appl. Mater. Interfaces 4, 997–1002 (2012)CrossRefGoogle Scholar
  11. 11.
    Qi, X., Lu, L., Jia, Z., Yang, Y., Liu, H.: Comparative tribological properties of magnesium hexasilicate and serpentine powder as lubricating oil additives under high temperature. Tribol. Int. 49, 53–57 (2012)CrossRefGoogle Scholar
  12. 12.
    Mosey, N.J., Müser, M.H., Woo, T.K.: Molecular mechanisms for the functionality of lubricant additives. Science 307, 1612–1615 (2005)CrossRefGoogle Scholar
  13. 13.
    Luo, T., Wei, X., Huang, X., Huang, L., Yang, F.: Tribological properties of Al2O3 nanoparticles as lubricating oil additives. Ceram. Int. 40, 7143–7149 (2014)CrossRefGoogle Scholar
  14. 14.
    Pejaković, V., Kronberger, M., Kalin, M.: Influence of temperature on tribological behaviour of ionic liquids as lubricants and lubricant additives. Lubr. Sci. 26, 07–115 (2014)Google Scholar
  15. 15.
    Abdullah, M.I.H.C., Abdollah, M.F.B., Amiruddin, H., Tamaldin, N., Nuri, N.R.M.: Optimization of tribological performance of hBN/AL2O3 nanoparticles as engine oil additives. Procedia Eng. 68, 313–319 (2013)CrossRefGoogle Scholar
  16. 16.
    Gourgouillon, D., Schrive, L., Sarrade, S., Rios, G.M.: An environmentally friendly process for the regeneration of used oils. Environ. Sci. Technol. 34, 3469–3473 (2000)CrossRefGoogle Scholar
  17. 17.
    Hamad, A., Al-Zubaidy, E., Fayed, M.E.: Used lubricating oil recycling using hydrocarbon solvents. J. Environ. Manage. 74, 153–159 (2005)CrossRefGoogle Scholar
  18. 18.
    Kovalenko, K.V., Krivokhizha, S.V., Rakaeva, G.V.: Quality control of petroleum oils with additives. Chem. Technol. Fuels Oils 43, 64–69 (2007)CrossRefGoogle Scholar
  19. 19.
    Li, W., Jiang, C., Chao, M., Wang, X.: Natural garlic oil as a high-performance, environmentally friendly, extreme pressure additive in lubricating oils. ACS Sustain. Chem. Eng. 2, 798–803 (2014)CrossRefGoogle Scholar
  20. 20.
    Karmakar, G., Ghosh, P.: Green additives for lubricating oil. ACS Sustain. Chem. Eng. 1, 1364–1370 (2013)CrossRefGoogle Scholar
  21. 21.
    Yen, G.C., Wu, J.Y.: Antioxidant and radical scavenging properties of extracts from Ganoderma tsugae. Food Chem. 65(3), 375–379 (1999)CrossRefGoogle Scholar
  22. 22.
    IP standard test methods for analysis and testing of petroleum and related products, and British Standard 2000 Parts, Energy Institute (2014)Google Scholar
  23. 23.
    Erhan, S.Z., Sharma, B.K., Perez, J.M.: Oxidation and low temperature stability of vegetable oil-based lubricants. Ind. Crops Prod. 24(3), 292–299 (2006)CrossRefGoogle Scholar
  24. 24.
    Cerny, J., Strnad, Z., Sebor, G.: Composition and oxidation stability of SAE 15W-40 engine oils. Tribol. Int. 34(2), 127–134 (2001)CrossRefGoogle Scholar
  25. 25.
    Sequeira, A.: Lubricant Base Oil and Wax Processing. CRC Press, Boca Raton (1994)Google Scholar
  26. 26.
    Duangkaewmanee, S., Petsom, A.: Synergistic and antagonistic effects on oxidation stability of antioxidants in a synthetic ester based oil. Tribol. Int. 44(3), 266–271 (2011)CrossRefGoogle Scholar
  27. 27.
    Egharevba, F., Maduako, A.U.: Assessment of oxidation in automotive crankcase lube oil: effects of metal and water activity. Ind. Eng. Chem. Res. 41(14), 3473–3481 (2002)CrossRefGoogle Scholar
  28. 28.
    Alvarez, J., Lopez, G., Amutio, M., Bilbao, J., Olazar, M.: Bio-oil production from rice husk fast pyrolysis in a conical spouted bed reactor. Fuel 28, 162–169 (2014)CrossRefGoogle Scholar
  29. 29.
    Qian, Y., Zhang, J., Wang, J.: Pressurized pyrolysis of rice husk in an inert gas sweeping fixed-bed reactor with a focus on bio-oil deoxygenation. Biores. Technol. 174, 95–102 (2014)CrossRefGoogle Scholar
  30. 30.
    Heo, H.S., Park, H.J., Park, Y.K., Ryu, C., Suh, D.J., Suh, Y.W., Kim, S.S.: Bio-oil production from fast pyrolysis of waste furniture sawdust in a fluidized bed. Biores. Technol. 101(1), S91–S96 (2010)CrossRefGoogle Scholar
  31. 31.
    Abu Bakar, M.S., Titiloye, J.O.: Catalytic pyrolysis of rice husk for bio-oil production. J. Anal. Appl. Pyrol. 103, 362–368 (2013)CrossRefGoogle Scholar
  32. 32.
    Lee, S.C., Kim, J.H., Jeong, S.M., Kim, D.R., Ha, J.U., Nam, K.C., Ahn, D.U.: Effect of far-infrared radiation on the antioxidant activity of rice hulls. J. Agric. Food Chem. 51, 4400–4403 (2003)CrossRefGoogle Scholar
  33. 33.
    Iqbal, S., Bhanger, M.I., Anwar, F.: Antioxidant properties and components of some commercially available varieties of rice bran in Pak. Food Chem. 93, 265–272 (2005)CrossRefGoogle Scholar
  34. 34.
    Pinelo, M., Rubilar, M., Sineiro, J., Nunez, M.J.: Extraction of antioxidant phenolics from almond hulls (Prunus amygdalus) and pine sawdust (Pinus pinaster). Food Chem. 85(2), 267–273 (2004)CrossRefGoogle Scholar
  35. 35.
    Saha, J.B.T., Abia, D., Dumarçay, S., Ndikontar, M.K., Gérardin, P., Ngamveng Noah, J., Perrin, D.: Antioxidant activities, total phenolic contents and chemical compositions of extracts from four Cameroonian woods: Padouk (Pterocarpus soyauxii Taubb), tali (Erythrophleum suaveolens), moabi (Baillonella toxisperma), and movingui (Distemonanthus benthamianus). Ind. Crops Prod. 41, 71–77 (2013)CrossRefGoogle Scholar
  36. 36.
    Wang, S.S.: Road tests of oil condition sensor and sensing technique. Sens. Actuators B Chem. 73(2), 106–111 (2001)CrossRefGoogle Scholar
  37. 37.
    Basu, A., Berndorfer, A., Buelna, C., Campbell, J., Ismail, K., Lin, Y., Wang, S.S.: “Smart Sensing” of Oil Degradation and Oil Level Measurements in Gasoline Engines (No. 2000-01-1366). SAE Technical Paper (2000)Google Scholar
  38. 38.
    Cerny, J., Strnad, Z., Sebor, G.: Composition and oxidation stability of SAE 15W-40 engine oils. Tribol. Int. 34(2), 127–134 (2001)CrossRefGoogle Scholar
  39. 39.
    Adhvaryu, A., Erhan, S.Z., Liu, Z.S., Perez, J.M.: Oxidation kinetic studies of oils derived from unmodified and genetically modified vegetables using pressurized differential scanning calorimetry and nuclear magnetic resonance spectroscopy. Thermochim. Acta 364(1), 87–97 (2000)CrossRefGoogle Scholar
  40. 40.
    Jain, M.R., Sawant, R., Paulmer, R.D.A., Ganguli, D., Vasudev, G.: Evaluation of thermo-oxidative characteristics of gear oils by different techniques: effect of antioxidant chemistry. Thermochim. Acta 435(2), 72–175 (2005)CrossRefGoogle Scholar
  41. 41.
    Santos, J.C.O., Santos, I.M.G.D., Souza, A.G., Sobrinho, E.V., Fernandes Jr, V.J., Silva, A.J.N.: Thermoanalytical and rheological characterization of automotive mineral lubricants after thermal degradation. Fuel 83(17), 2393–2399 (2004)CrossRefGoogle Scholar
  42. 42.
    Blaine, S., Savage, P.E.: Reaction pathways in lubricant degradation. 3. Reaction model for n-hexadecane autoxidation. Ind. Eng. Chem. Res. 31(1), 69–75 (1992)CrossRefGoogle Scholar
  43. 43.
    Ohgake, R., Sunami, M., Yoshida, T., Watanabe, H.: ASTM Special Technical Publication, pp. 32–33 (1989)Google Scholar
  44. 44.
    Ossia, C.V., Han, H.G., Kong, H.: Tribological evaluation of selected biodegradable oils with long chain fatty acids. Ind. Lubr. Tribol. 62(1), 26–31 (2010)CrossRefGoogle Scholar
  45. 45.
    Shrivastava, S.P.: Base Oil: Quality Trends and Technology Option for Their Production. In: International Symposium on Fuels and Lubricants, vol. 69. Allied Publishers, New Dheli (2000)Google Scholar
  46. 46.
    Rasberger, M.: Oxidative degradation and stabilisation of mineral oil based lubricants. In: Chemistry and Technology of Lubricants, pp. 98–143. Springer, Netherlands. Ind. Eng. Chem. Res. 31(1), 69–75 (1997)Google Scholar
  47. 47.
    Araújo, S.V., Luna, F.M.T., Rola Jr, E.M., Azevedo, D., Cavalcante Jr, C.L.: A rapid method for evaluation of the oxidation stability of castor oil FAME: influence of antioxidant type and concentration. Fuel Process. Technol. 90(10), 1272–1277 (2009)CrossRefGoogle Scholar
  48. 48.
    Bakunin, V.N., Parenago, O.P.: A mechanism of thermo-oxidative degradation of polyol ester lubricants. J. Synth. Lubr. 9(2), 127–143 (1992)CrossRefGoogle Scholar
  49. 49.
    Barman, B.N.: Behavioral differences between group I and group II base oils during thermo-oxidative degradation. Tribol. Int. 35(1), 15–26 (2002)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Pedersen, K.S., Rønningsen, H.P.: Influence of wax inhibitors on wax appearance temperature, pour point, and viscosity of waxy crude oils. Energy Fuels 17(2), 321–328 (2003)CrossRefGoogle Scholar
  51. 51.
    Erhan, S.Z., Sharma, B.K., Liu, Z., Adhvaryu, A.: Lubricant base stock potential of chemically modified vegetable oils. J. Agric. Food Chem. 56(19), 8919–8925 (2008)CrossRefGoogle Scholar
  52. 52.
    Okoye, I.P., Onwe, O.J., Akaranta, O.: The effect of the natural antioxidant quercetin on the oxidation stability of lubricating oil. Sci. Afr. 8(2), 26–30 (2009)Google Scholar
  53. 53.
    Alexsandra de Sousa Rios, M., Sales, F.A.M., Mazzetto, S.E.: Study of antioxidant properties of 5-n-pentadecyl-2-tert-amylphenol. Energy Fuels 23(5), 2517–2522 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Imtiaz Ahmad
    • 1
    Email author
  • Jan Ullah
    • 1
  • M. Ishaq
    • 1
  • Hizbullah Khan
    • 2
  • Razia Khan
    • 1
  • Waqas Ahmad
    • 1
  • Kashif Gul
    • 1
  1. 1.Institute of Chemical SciencesUniversity of PeshawarPeshawarPakistan
  2. 2.Department of Environmental SciencesUniversity of PeshawarPeshawarPakistan

Personalised recommendations