Advertisement

Waste and Biomass Valorization

, Volume 7, Issue 2, pp 267–280 | Cite as

Use of Recalcitrant Agriculture Wastes to Produce Biogas and Feasible Biofertilizer

  • M. R. Panuccio
  • E. Attinà
  • C. Basile
  • C. Mallamaci
  • A. MuscoloEmail author
Original Paper

Abstract

In the ongoing work, the digestion process of recalcitrant agricultural wastes (olive wastes and citrus pulps) mixed in different proportions with, livestock manures, milk serum and maize silage for biogas production was studied. Additionally, the chemical composition and the phytotoxicity of the digestates (each separated in liquid and solid fraction) were evaluated with the purpose of being used as organic fertilizer in agriculture. The results demonstrated that animal manure and recalcitrant agricultural wastes, if properly mixed, produced high percentage of biogas. The digestate chemical compositions differed and varied in respect to the kind of feedstock, and the ratio of their mixing to feed the digesters. The digestate from the digester named Fattoria, mainly powered with animal manures (poultry, cow and sheep), contained less phenols and more active microbial biomass than the digestate from the digester Uliva, mainly fed with olive waste and citrus pulp and in minor extent with animal manure and maize silage. Our data showed that the digestate composition depended on the mix of biomass input. Additionally, the effects of digestate were plant species-specific and a positive correlation between the amount of phenols and the phytotoxic effects of digestate on plants was also well evident. These results suggest that the sustainable disposal of digestates requires a preliminary screening to select the one which better fits the demands of a particular species for optimizing crop production.

Keywords

Anaerobic digestion Antioxidant system Biogas Digestate Phytotoxicity Seed germination 

Notes

Acknowledgments

The authors gratefully acknowledge the valuable assistance of the following people: Carmelo Mallamaci and Maria Sidari of Agricultural Science Department for support with germination analysis; Antonio Morabito Coop. Fattoria della Piana Soc. Agr. for technical support with biogas plant process; Special thanks are due to the anonymous reviewer for comments, questions and careful and helpful review. This work was conducted with funding from Fattoria della Piana Soc. Agr.

Compliance with Ethical Standards

Conflict of interest

The authors declare they have no competing financial interests.

References

  1. 1.
    Houghton, J.: Global warming. Rep. Prog. Phys. 68, 1343–1356 (2005)CrossRefGoogle Scholar
  2. 2.
    Mazzanti, M., Zoboli, R.: Waste generation, incineration and landfill diversion. De-coupling trends, socio-economic drivers and policy effectiveness in the EU. In: 13th Coalition Theory Network Workshop organised by the Fondazione Eni Enrico Mattei (FEEM), held in Venice, Italy on 24–25 January 2008, 31 ppGoogle Scholar
  3. 3.
    Kothari, R., Tyagi, V.V., Pathak, A.: Waste-to-energy: a way from renewable energy sources to sustainable development. Renew. Sustain. Energy Rev. (2010). doi: 10.1016/j.rser.2010.05.005 Google Scholar
  4. 4.
    Hublin, A., Schneide, D.R., Džodan, J.: Utilization of biogas produced by anaerobic digestion of agro-industrial waste: energy, economic and environmental effects. Waste Manag. Res. 32(7), 626–633 (2014)CrossRefGoogle Scholar
  5. 5.
    Tambone, F., Terruzzi, F., Scaglia, B., Adani, F.: Composting of the solid fraction of digestate derived from pig slurry: biological processes and compost properties. Waste Manag 35, 55–61 (2015)CrossRefGoogle Scholar
  6. 6.
    Formowitz, B., Fritz, M.: Biogas digestates as organic fertilizer in different crop rotations. In: 18th European biomass conference exhibition, Lyon, France (2010)Google Scholar
  7. 7.
    Rigby, H., Smith, S.R.: Nitrogen availability and indirect measurements of greenhouse gas emissions from aerobic and anaerobic biowaste digestates applied to agricultural soils. Waste Manag 33, 2641–2652 (2013)CrossRefGoogle Scholar
  8. 8.
    Mangwandi, C., Tao, L.J., Albadarin, A.B., Allen, S.J., Walker, G.M.: The variability in nutrient composition of Anaerobic Digestate granules produced from high shear granulation. Waste Manag 33, 33–42 (2013)CrossRefGoogle Scholar
  9. 9.
    Seadi, T.A.L., Lukehurst, C.: Quality management of digestate from biogas plants used as fertilizer. In: Baxter, D. (task Leader) (ed.) IEA Bioenergy. European Commission, Joint Research Centre, UK (2012)Google Scholar
  10. 10.
    Battini, F., Agostini, A., Boulamanti, A.K., Giuntoli, J., Amaducci, S.: Mitigating the environmental impacts of milk production via anaerobic digestion of manure: case study of a dairy farm in the Po Valley. Sci. Total Environ. 481, 196–208 (2014)CrossRefGoogle Scholar
  11. 11.
    Neubauer, A.: Convergence with EU Waste Policies. Short Guide for ENP Partners and Russia, Policy Guide: Waste Policy, 34 pp. ISBN number 978-92-79-08286-3, Catalogue number KH-30-08-208-EN-C (2007)Google Scholar
  12. 12.
    Peris-Moll, E.M., Juliá-Igual, J.F.: Effects of regulation (EEC) 2078/92 on citrus growing in Calabria (Italy) and the Region of Valencia (Spain). Span. J. Agric. Res. 3(1), 34–42 (2005)CrossRefGoogle Scholar
  13. 13.
    Sabiiti, E.N.: Utilising agricultural waste to enhance food security and conserve the environment. Afr. J. Food Agric. Nutr. Dev. 11, 1–9 (2011)Google Scholar
  14. 14.
    Steinfeld, H., Gerber, P., Wasenaar, T., Castel, V., Rosales, M., de Haan, C.: Livestock’s Long Shadow. Environment Issues and Options. LEAD and FAO, Rome (2006). http://www.virtualcentre.org/en/library/key_pub/longshad/A0701E00.htm
  15. 15.
    Bentsen, N.S., Felby, C.: Biomass for energy in the European Union—a review of bioenergy resource assessments. Biotech. Biofuels 5, 1–10 (2012). doi: 10.1186/1754-6834-5-25 CrossRefGoogle Scholar
  16. 16.
    EEA (European Environment Agency). EU bioenergy potential from a resource-efficiency perspective. In: Environmental Production, Printed by Rosendahls-Schultz Grafisk-Environmental Management Certificate: DS/EN ISO 14001: 2004. Publications Office of the European Union, Luxembourg (2013). ISBN 978-92-9213-397-9; ISSN 1725-9177; doi: 10.2800/92247
  17. 17.
    Mathias, J.F.C.M.: Manure as a resource: livestock waste management from anaerobic digestion, opportunities and challenges for Brazil. Int. Food Agribus. Manag. Rev. 17, 87–110 (2014)Google Scholar
  18. 18.
    AFNOR: NF T Qualité de l’eau—Determination de la demande chimique en oxygene (DCO), pp. 90–101 (2001)Google Scholar
  19. 19.
    Nelson, D.W., Sommers, L.E.: Total carbon, organic carbon, and organic matter. In: Page, A.L., Miller, R.H., Keeney, D.R. (eds.) Methods of Soil Analysis, pp. 539–579. American Society of Agronomy, Madison (1982)Google Scholar
  20. 20.
    Bremner, J.M., Mulvaney, C.S.: Nitrogen-total. In: Page, A.L., Miller, R.H., Keeney, D.R. (eds.) Methods of Soil Analysis, pp. 595–624. American Society of Agronomy, Madison (1982)Google Scholar
  21. 21.
    Bray, R.H., Kurtz, T.: Determination of total, organic and available forms of phosphorous in soils. Soil Sci. 59, 39–45 (1945)CrossRefGoogle Scholar
  22. 22.
    Sommer, S.G., Kjellerup, V., Kristjansen, O.: Determination of total ammonium nitrogen in pig and cattle slurry: sample preparation and analysis. Acta Agric. Scand. B Soil Plant Sci. 42, 146–151 (1992)Google Scholar
  23. 23.
    Box, J.D.: Investigation of the Folin-Ciocalteau reagent for the determination of polyphenolic substances in natural waters. Water Res. 17, 511–525 (1983)CrossRefGoogle Scholar
  24. 24.
    Kuiters, A.T., Denneman, C.A.J.: Water-soluble phenolic substances in soils under several coniferous and deciduous tree species. Soil Biol. Biochem. 19, 765–769 (1987)CrossRefGoogle Scholar
  25. 25.
    Adam, G., Duncan, H.: Development of a sensitive and rapid method for the measurement of total microbial activity using fluorescein diacetate (FDA) in a range of soils. Soil Biol. Biochem. 33, 943–951 (2001)CrossRefGoogle Scholar
  26. 26.
    Kamara, A., Kamara, A., Mansaray, M.M., Sawyerr, P.A.: Effects of biochar derived from maize stover and rice straw on the germination of their seeds. Am. J. Agric. For. 2(6), 246–249 (2014)Google Scholar
  27. 27.
    Solaimam, Z.M., Murphy, D.V., Abbott, L.K.: Biochars influence seed germination and early growth of seedlings. Plant Soil 353, 273–287 (2012)CrossRefGoogle Scholar
  28. 28.
    Bargmann, J., Rillig, M.C., Buss, W., Kruse, A., Kuecke, M.: Hydrochar and biochar effects on germination of spring barley. J. Agron. Crop Sci. 199(5), 360–373 (2013)CrossRefGoogle Scholar
  29. 29.
    Warman, P.R.: Evaluation of seed germination and growth test for assessing compost maturity. Compost Sci. Util. 7, 33–37 (1999)CrossRefGoogle Scholar
  30. 30.
    Araujo, A.S.F., Monteiro, R.T.R.: Plant bioassays to asses toxicity of textile sludge compost. Sci. Agric. 622, 86–290 (2005)Google Scholar
  31. 31.
    Mitelut, A.C., Popa, M.E.: Seed germination bioassay for toxicity evaluation of different composting biodegradable materials. Rom. Biotech. Lett. 16, 121–129 (2011)Google Scholar
  32. 32.
    Kader, M.A., Sutzi, J.C.: Effects of thermal and salt treatments during imbibition on germination and seedling growth of sorghum at 42/19°C. J. Agron. Crop Sci. 190, 35–38 (2004)CrossRefGoogle Scholar
  33. 33.
    Kader, M.A.: A comparison of seed germination calculation formulae and the associated interpretation of resulting data. J. Proc. R. Soc. N. S. W. 138(38), 65–75 (2005)Google Scholar
  34. 34.
    Beaumont, F., Jouve, H.M., Gagnon, J., Gaillard, J., Pelmont, J.: Purification and properties of a catalase from potato tubers (Solanum tuberosum). Plant Sci. 72, 19–26 (1990)CrossRefGoogle Scholar
  35. 35.
    Nakano, Y., Asada, K.: Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol. 22, 867–880 (1981)Google Scholar
  36. 36.
    Gomes-Junior, R.A., Moldes, C.A., Delite, F.S., Pompeu, G.B., Gratão, P.L., Mazzafera, P., Lea, P.J., Azevedo, R.A.: Antioxidant metabolism of coffee cell suspension cultures in response to cadmium. Chemosphere 65, 1330–1337 (2006)CrossRefGoogle Scholar
  37. 37.
    Panda, S.K., Chaudhury, I., Khan, M.H.: Heavy metals induce lipid peroxidation and affects antioxidants in wheat leaves. Biol. Plant. 46, 289–294 (2003)CrossRefGoogle Scholar
  38. 38.
    Prieto, P., Pineda, M., Aguilar, M.: Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Anal. Biochem. 269, 337–341 (1999)CrossRefGoogle Scholar
  39. 39.
    Prasad, K.N., Yang, B., Yang, S.Y., Chen, Y.L., Zhao, M.M., Ashraf, M.: Identification of phenolic compounds and appraisal of antioxidant and antityrosinase activities from litchi (Litchi sinensis Sonn.) seeds. Food Chem. 116, 1–7 (2009)CrossRefGoogle Scholar
  40. 40.
    Singleton, V.L., Rossi, J.A.: Colorimetry of total phenolics with phosphomolybdic-phosphotungstic acid reagents. Am J Enol. Vitic. 16, 144–158 (1965)Google Scholar
  41. 41.
    Rincon, B., Sanchez, E., Raposo, F., Borja, R., Travieso, L., Martin, M.A., Martin, A.: Effect of the organic loading rate on the performance of anaerobic acidogenic fermentation of two phase olive mill solid residue. Waste Manag 28, 870–877 (2008)CrossRefGoogle Scholar
  42. 42.
    Buffiere, P., Loisel, D., Bernet, N., Delgenes, J.P.: Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci. Technol. 53, 233–241 (2006)CrossRefGoogle Scholar
  43. 43.
    Levén, L., Nyberg, K., Korkea-Aho, L., Schnürer, A.: Phenols in anaerobic digestion processes and inhibition of ammonia oxidising bacteria (AOB) in soil. Sci. Total Environ. 364, 229–238 (2006)CrossRefGoogle Scholar
  44. 44.
    Obied, H.K., Song, Y., Faley, S., Loughlin, M., Rehman, A., Mailer, R., Masoul, T., Ayboola, S.: Biophenols and antioxidant properties of Australian canola meal. J. Agric. Food Chem. 38, 9176–9184 (2013)CrossRefGoogle Scholar
  45. 45.
    Battista, F., Fino, D., Ruggeri, B.: Polyphenols concentration’s effect on the biogas production by wastes derived from olive oil production. Chem. Eng. Trans. 38, 373–378 (2014). doi: 10.3303/CET1438063 Google Scholar
  46. 46.
    Muscolo, A., Panuccio, M.R., Sidari, M.: Respiratory enzyme activities during germination of Pinus laricio seeds treated with phenols extracted from different forest soils. Plant Growth Regul. 35, 31–35 (2001)CrossRefGoogle Scholar
  47. 47.
    Muscolo, A., Sidari, M.: Seasonal fluctuations in soil phenolics of a coniferous forest: effects on seed germination of different coniferous species. Plant Soil 284, 305–318 (2006)CrossRefGoogle Scholar
  48. 48.
    Chowdhury, M.A.Z., Mahin, A.A., Fakhruddin, A.N.M.: Degradation of phenol by Pseudomonas putida when supplied as sole carbon source and in the presence of glucose. Bangladesh J. Microbiol. 23, 29–33 (2006)Google Scholar
  49. 49.
    Taylor, J.P., Wilson, B., Mills, M.S., Burns, R.G.: Comparison of microbial numbers and enzymatic activities in surface soils and subsoils using various techniques. Soil Biol. Biochem. 34, 387–401 (2002)CrossRefGoogle Scholar
  50. 50.
    Muscolo, A., Panuccio, M.R., Mallamaci, C., Sidari, M.: Biological indicators to assess short-term soil quality changes in forest ecosystems. Ecol. Ind. 45, 416–423 (2014)CrossRefGoogle Scholar
  51. 51.
    Muscolo, A., Settineri, G., Attinà, E.: Early warning indicators of changes in soil ecosystem functioning. Ecol. Ind. 48, 542–549 (2015)CrossRefGoogle Scholar
  52. 52.
    Romanova, E.V., Gins, M.S., Plushikov, V.G., Zargar, M.: Productivity and antioxidant activity of plant Brassica chinensis L. Int. J. Biosci. 4, 162–167 (2014)Google Scholar
  53. 53.
    Bailly, C.: Active oxygen species and antioxidants in seed biology. Seed Sci. Res. 14, 1–15 (2004)CrossRefGoogle Scholar
  54. 54.
    Solecka, D.: Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiol. Plant. 19(3), 257–268 (1997). doi: 10.1007/s11738-997-0001-1 CrossRefGoogle Scholar
  55. 55.
    Amarowicz, R., Weidner, S.: Biological activity of grapevine phenolic compounds. In: Roubelakis-Angelakis, K.A. (ed.) Grapevine Molecular Physiology and Biotechnology, pp. 389–405. Springer, Dordrecht (2009). doi: 10.1007/978-90-481-2305-6 CrossRefGoogle Scholar
  56. 56.
    Meiado, M.V., Albuquerque, L.S.C., Rocha, E.A., Rojasaréchiga, M., Leal, I.R.: Seed germination responses of Cereus jamacaru DC. ssp. jamacaru (Cactaceae) to environmental factors. Plant Species Biol. 25, 120–128 (2010). doi: 10.1111/j.1442-1984.2010.00274 CrossRefGoogle Scholar
  57. 57.
    Lattanzio, V., Cardinali, A., Linsalata, V.: plant phenolics: a biochemical and physiological perspective. In: Cheynier, V., Sarni-Manchado, P., Quidean, S. (eds.) Recent Advances in Polyphenol Research, vol. 3(1), pp. 1–39. Wiley-Blackwell, Oxford (2012)CrossRefGoogle Scholar
  58. 58.
    Ribeiro, R.C., Matias, J.R., Pelacani, C.R., Dantas, B.F.: Activity of antioxidant enzymes and proline accumulation in Erythrina velutina Willd. seeds subjected to abiotic stresses during germination. J. Seed Sci. 36(2), 231–239 (2014)CrossRefGoogle Scholar
  59. 59.
    Fuchs, J.G., Berner, A., Mayer, J., Schleiss, K.: Concept for quality management to secure the benefits of compost use for soil and plants. In: International Symposium Organic Matter Management & Using Compost in Horticulture, 4–7 April 2011, University of Adelaide, AustraliaGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • M. R. Panuccio
    • 1
  • E. Attinà
    • 1
  • C. Basile
    • 2
  • C. Mallamaci
    • 1
  • A. Muscolo
    • 1
    Email author
  1. 1.AGRARIA Department“Mediterranea” UniversityReggio CalabriaItaly
  2. 2.Coop. Fattoria della Piana Soc. Agr. C.da SoveretoCandidoniItaly

Personalised recommendations