Skip to main content
Log in

Electrostatic Biosorption of COD, Mn and H2S on EFB-Based Activated Carbon Produced through Steam Pyrolysis: An Analysis Based on Surface Chemistry, Equilibria and Kinetics

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Biosorption of chemical oxygen demand (COD), manganese (Mn) and hydrogen sulphide (H2S) onto an empty fruit bunch (EFB)–based powdered activated carbon (PAC) from a multicomponent system—biotreated palm oil mill effluent (BPOME)—were studied in a batch adsorption process. The experimental results were fitted to four isotherm models, and four kinetic models. Amongst the isotherm models (Langmuir, Freundlich, Temkin and Dubinin-Radushkevich) employed, Langmuir model showed the best conformity to the equilibrium data with R 2 values of 1.00 for COD and 0.9999 for both Mn and H2S. The Dubinin–Radushkevich model followed the conformity trend with R 2 values of 0.9984, 0.9948 and 0.9824 for COD, H2S, and Mn, respectively. Also, amongst the kinetic models (Pseudo-first order, Lagergren’s pseudo-second order, Elovich and Weber–Morris intra-particle diffusion) employed, only the pseudo-second order model could best describe the adsorption behaviours of all the three contaminants with R 2 values of 1.00 in all cases. The mechanistic uptake pathway was further examined by means of the Fourier transform infrared in studying the surface chemistry of the PAC. It was observed that the presence of functional groups like the aldehydes and ketones, carbonyl, mono-alkyl, amines, amongst others led to physicochemical interactions between PAC surface and the contaminants. Overall, the equilibrium, kinetics and surface chemistry analyses pointed towards the adsorption processes been largely driven by electrostatic sorption. Additionally, the EFB-based PAC was capable of reducing COD, Mn and H2S from POME, hence, could be utilized in developing a unit operation for integration into the current POME treatment.

Graphical Abstract

Percent uptake versus adsorption time plot for COD, Mn and H2S removal from biotreated POME.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Suzuki, M.: Adsorption Engineering. Kodansha Ltd. and Elsevier Science Publishers B.V, Tokyo (1990)

    Google Scholar 

  2. Çeçen, F., Aktaş, Ö.: Activated carbon for water and wastewater treatment: Integration of adsorption and biological treatment. Wiley-VCH Verlag & Co. KGaA, Weinheim (2012)

    Google Scholar 

  3. Noble, R.D., Terry, P.A.: Principles of chemical separations with environmental applications. Cambridge University Press, Cambridge (2004)

    Book  Google Scholar 

  4. Ignatowicz, K.: Low-cost sorbent for removing pesticides during water treatment. In: Stoytcheva, M. (ed.) Pesticides—Formulations, Effects, Fate. Intech, Rijeka (2011)

    Google Scholar 

  5. Dąbrowski, A.: Adsorption—from theory to practice. Adv. Colloid Interface Sci. 93(1), 135–224 (2001)

    Article  Google Scholar 

  6. Crini, G., Badot, P.-M.: Sorption Processes and Pollution: Conventional and Non-conventional Sorbents for Pollutant Removal from Wastewaters. Presses universitaires de Franche, Comté (2010)

    Google Scholar 

  7. USEPA: Handbook for Sampling and Sample Preservation of Water and Wastewater-USEPA, vol. EPA-600/4-82-029. Environmental Monitoring and Support Laboratory Office of Research and Development, Cincinnati, Ohio (1982)

  8. Phan, N.H., Rio, S., Faur, C., Le Coq, L., Le Cloirec, P., Nguyen, T.H.: Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications. Carbon 44(12), 2569–2577 (2006)

    Article  Google Scholar 

  9. Koay, Y.S., Ahamad, I.S., Mohsen Nourouzi, M., Chuah, T.G.: Ion-exchange adsorption of reactive dye solution onto quaternized palm kernel shell. J. Appl. Sci. 14(12), 1314–1318 (2014). doi:10.3923/jas.2014.1314.1318.

    Article  Google Scholar 

  10. Amosa, M.K., Jami, M.S., Alkhatib, M.F.R., Jimat, D.N., Muyibi, S.A.: A two-step optimization and statistical analysis of COD reduction from biotreated POME using empty fruit bunch-based activated carbon produced from pyrolysis. Water Qual Expo Health (2015). doi:10.1007/s12403-015-0176-4

    Google Scholar 

  11. El-Naas, M.H., Al-Zuhair, S., Alhaija, M.A.: Reduction of COD in refinery wastewater through adsorption on date-pit activated carbon. J. Hazard. Mater. 173(1), 750–757 (2010)

    Article  Google Scholar 

  12. Demiral, H., Gündüzoğlu, G.: Removal of nitrate from aqueous solutions by activated carbon prepared from sugar beet bagasse. Bioresour. Technol. 101(6), 1675–1680 (2010)

    Article  Google Scholar 

  13. Ho, Y.S., Porter, J.F., McKay, G.: Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: copper, nickel and lead single component systems. Water Air Soil Pollut. 141(1–4), 1–33 (2002)

    Article  Google Scholar 

  14. Richter, E., Wilfried, S., Myers, A.L.: Effect of adsorption equation on prediction of multicomponent adsorption equilibria by the ideal adsorbed solution theory. Chem. Eng. Sci. 44(8), 1609–1616 (1989)

    Article  Google Scholar 

  15. Kamari, A., Ngah, W.S.: Isotherm, kinetic and thermodynamic studies of lead and copper uptake by H2SO4 modified chitosan. Colloids Surf. B 73(2), 257–266 (2009)

    Article  Google Scholar 

  16. Langmuir, I.: The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 40(9), 1361–1403 (1918)

    Article  Google Scholar 

  17. Langmuir, I.: The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 38(11), 2221–2295 (1916)

    Article  Google Scholar 

  18. Langmuir, I.: The constitution and fundamental properties of solids and liquids. Part II. Liquids. J. Am. Chem. Soc. 39(9), 1848–1906 (1917)

    Article  Google Scholar 

  19. Amosa, M.K., Alkhatib, M.F.R., Jami, M.S., Jimat, D.N., Owolabi, R.U., Muyibi, S.A.: Morphological synthesis and environmental application of ZSM-5 zeolite crystals from combined low-water and fluoride syntheses routes. Adv. Environ. Biol. 8(3), 613–625 (2014)

    Google Scholar 

  20. Demiral, H., Demiral, İ., Tümsek, F., Karabacakoğlu, B.: Pore structure of activated carbon prepared from hazelnut bagasse by chemical activation. Surf. Interface Anal. 40(3–4), 616–619 (2008)

    Article  Google Scholar 

  21. Lee, C.-H.: Adsorption science and technology. World Scientific Publishing Co. Re. Ltd, Singapore (2003)

    Book  Google Scholar 

  22. Toth, J.: Adsorption: Theory, Modeling and Analysis. Marcel Dekker Inc., New York (2002)

    Google Scholar 

  23. Dada, A.O., Olalekan, A.P., Olatunya, A.M., Dada, O.: Langmuir, Freundlich, Temkin and Dubinin–Radushkevich isotherms studies of equilibrium sorption of Zn2+ unto phosphoric acid modified rice husk IOSR. J. Appl. Chem. 3(1), 38–45 (2012)

    Google Scholar 

  24. Freundlich, H.M.F.: Over the adsorption in solution. J. Phys. Chem. 57(385471), 1100–1107 (1906)

    Google Scholar 

  25. El-Naas, M., Al-Rub, F.A., Ashour, I., Al Marzouqi, M.: Effect of competitive interference on the biosorption of lead (II) by Chlorella vulgaris. Chem. Eng. Process. 46(12), 1391–1399 (2007)

    Article  Google Scholar 

  26. Hameed, B., Daud, F.: Adsorption studies of basic dye on activated carbon derived from agricultural waste: Hevea brasiliensis seed coat. Chem. Eng. J. 139(1), 48–55 (2008)

    Article  Google Scholar 

  27. Gómez, V., Larrechi, M.S., Callao, M.P.: Kinetic and adsorption study of acid dye removal using activated carbon. Chemosphere 69(7), 1151–1158 (2007). doi:10.1016/j.chemosphere.2007.03.076

    Article  Google Scholar 

  28. Radushkevich, L.: Potential theory of sorption and structure of carbons. Zh. Fiz. Khim. 23(12), 1410–1420 (1949)

    Google Scholar 

  29. Dubinin, M.: Modern state of the theory of volume filling of micropore adsorbents during adsorption of gases and steams on carbon adsorbents. Zh. Fiz. Khim. 39(19), 1305–1317 (1965)

    Google Scholar 

  30. Ho, Y.-S.: Review of second-order models for adsorption systems. J. Hazard. Mater. 136(3), 681–689 (2006)

    Article  Google Scholar 

  31. Amin, N.K.: Removal of reactive dye from aqueous solutions by adsorption onto activated carbons prepared from sugarcane bagasse pith. Desalination 223(1), 152–161 (2008)

    Article  Google Scholar 

  32. Ho, Y.-S.: Removal of copper ions from aqueous solution by tree fern. Water Res. 37(10), 2323–2330 (2003)

    Article  Google Scholar 

  33. Robati, D.: Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube. J. Nanostruct. Chem. 3(55), 1–6 (2013). doi:10.1186/2193-8865-3-55

    Google Scholar 

  34. Taffarel, S.R., Rubio, J.: On the removal of Mn2+ ions by adsorption onto natural and activated Chilean zeolites. Miner. Eng. 22(4), 336–343 (2009). doi:10.1016/j.mineng.2008.09.007

    Article  Google Scholar 

  35. Plazinski, W., Dziuba, J., Rudzinski, W.: Modeling of sorption kinetics: the pseudo-second order equation and the sorbate intraparticle diffusivity. Adsorption 19(5), 1055–1064 (2013). doi:10.1007/s10450-013-9529-0

    Article  Google Scholar 

  36. Weber, W.J., Morris, J.C.: Advances in water pollution research: removal of biologically resistant pollutant from wastewater by adsorption. In: International Conference on Water Pollution Symposium, pp. 231–266. Pergamon, Oxford (1962)

  37. Hameed, B.H., Tan, I.A.W., Ahmad, A.L.: Adsorption isotherm, kinetic modeling and mechanism of 2,4,6-trichlorophenol on coconut husk-based activated carbon. Chem. Eng. J. 144, 235–244 (2008)

    Article  Google Scholar 

  38. Plazinski, W., Rudzinski, W.: Kinetics of adsorption at solid/solution interfaces controlled by intraparticle diffusion: a theoretical analysis. J. Phys. Chem. C 113, 12495–12501 (2009)

    Article  Google Scholar 

  39. Acharya, J., Sahu, J., Mohanty, C., Meikap, B.: Removal of lead (II) from wastewater by activated carbon developed from Tamarind wood by zinc chloride activation. Chem. Eng. J. 149(1–3), 249–262 (2009)

    Article  Google Scholar 

  40. Alkhatib, M.F., Muyibi, S.A., Amode, J.O.: Optimization of activated carbon production from empty fruit bunch fibers in one-step steam pyrolysis for cadmium removal from aqueous solution. Environmentalist 31(4), 349–357 (2011)

    Article  Google Scholar 

  41. Hameed, B., Tan, I., Ahmad, A.: Preparation of oil palm empty fruit bunch-based activated carbon for removal of 2, 4, 6-trichlorophenol: optimization using response surface methodology. J. Hazard. Mater. 164(2), 1316–1324 (2009)

    Article  Google Scholar 

  42. Rodríguez-Reinoso, F.: Effect of porosity and functionality of activated carbon in adsorption. In: Zhou, L. (ed.) Adsorption: Progress in Fundamental and Application Research. World Scientific Publishing Co. Pte. Ltd., Singapore (2007)

    Google Scholar 

  43. Amosa, M.K., Jami, M.S., Alkhatib, M.F.R., Jimat, D.N., Muyibi, S.A.: Comparative and optimization studies of adsorptive strengths of activated carbons produced from steam- and CO2-activation for BPOME treatment. Adv. Environ. Biol. 8(3), 603–612 (2014)

    Google Scholar 

  44. Linders, M., Van Den Broeke, L., Van Bokhoven, J., Duisterwinkel, A., Kapteijn, F., Moulijn, J.: Effect of the adsorption isotherm on one-and two-component diffusion in activated carbon. Carbon 35(9), 1415–1425 (1997)

    Article  Google Scholar 

  45. Bansal, R.C., Goyal, M.: Activated carbon adsorption. Taylor and Francis Group, LLC, New York (2010)

    Google Scholar 

  46. Do Duong, D.: Adsorption Analysis: Equilibria and Kinetics, vol. 2. Imperial College Press, Singapore (1998)

    Google Scholar 

  47. Ferraro, J.R., Krishnan, K.: Practical Fourier Transform Infrared Spectroscopy: Industrial and Laboratory Chemical Analysis. Academic Press Inc., San Diego (2012)

    Google Scholar 

  48. Nikolic, G.S.: Fourier Transforms—New Analytical Approaches and FTIR Strategies. InTech, Rijeka (2011)

    Book  Google Scholar 

  49. Arunachalam, A.M.: Adsorption/absorption features of peat moss for water pollution control: feasibility studies for St. John’s harbour water pollution. Paper presented at the annual conference of the Canadian Society for Civil Engineering, Montreal, Quebec, Canada

  50. Igwe, J.C., Arukwe, U., Anioke, S.N.: Isotherm and kinetic studies of residual oil adsorption from palm oil mill effluent (POME) using boiler fly ash. Environ. Eng. Manag. J. 12(3), 417–427 (2013)

    Google Scholar 

  51. Yang, R.T.: Adsorbents: Fundamentals and Applications. Wiley, Hoboken (2003)

    Book  Google Scholar 

  52. Hassani, A., Vafaei, F., Karaca, S., Khataee, A.R.: Adsorption of a cationic dye from aqueous solution using Turkish lignite: kinetic, isotherm, thermodynamic studies and neural network modeling. J. Ind. Eng. Chem. 20(4), 2615–2624 (2014). doi:10.1016/j.jiec.2013.10.049

    Article  Google Scholar 

  53. Mohan, D., Sarswat, A., Ok, Y.S., Pittman Jr, C.U.: Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent—a critical review. Bioresour. Technol. (2014). doi:10.1016/j.biortech.2014.01.120

    Google Scholar 

  54. Emad, S.M.A.: Production of Powdered Activated Carbon from Oil Palm Empty Fruit Bunch for Removal of Phenol and Treatment of Palm Oil Mill Final Effluent. International Islamic University Malaysia, Kuala Lumpur (2010)

    Google Scholar 

  55. Corbitt, R.A.: Standard Handbook of Environmental Engineering, 2nd edn. McGraw-Hill, New York (1999)

    Google Scholar 

  56. Malkoc, E., Nuhoglu, Y.: Determination of kinetic and equilibrium parameters of the batch adsorption of Cr(VI) onto waste acorn of Quercus ithaburensis. Chem. Eng. Process. 46(10), 1020–1029 (2007)

    Article  Google Scholar 

  57. Itodo, A.U., Itodo, H.U.: Sorption energies estimation using Dubinin–Radushkevich and Temkin adsorption isotherms. Life Sci. J. 7(4), 31–39 (2010)

    Google Scholar 

  58. Hank, D., Azi, Z., Ait Hocine, S., Chaalal, O., Hellal, A.: Optimization of phenol adsorption onto bentonite by factorial design methodology. J. Ind. Eng. Chem. 20(4), 2256–2263 (2014). doi:10.1016/j.jiec.2013.09.058

    Article  Google Scholar 

  59. Crosson, G.S., Sandmann, E.: Kinetic study of denatonium sorption to smectite clay minerals. Environ. Eng. Sci. 30(6), 311–316 (2013)

    Article  Google Scholar 

  60. Motsi, T., Rowson, N.A., Simmons, M.J.H.: Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 92(1–2), 42–48 (2009). doi:10.1016/j.minpro.2009.02.005

    Article  Google Scholar 

  61. Kushwaha, S., Sudhakar, P.P.: Sorption of uranium from aqueous solutions using palm-shell-based adsorbents: a kinetic and equilibrium study. J. Environ. Radioact. 126, 115–124 (2013)

    Article  Google Scholar 

  62. Inglezakis, V.J., Loizidou, M.D., Grigoropoulou, H.P.: Equilibrium and kinetic ion exchange studies of Pb2+, Cr3+, Fe3+ and Cu2+ on natural clinoptilolite. Water Res. 36, 2784–2792 (2002)

    Article  Google Scholar 

  63. Kiurski, J., Adamovic, S., Krstic, J., Oros, I., Miloradov, M.V.: Adsorption efficiency of low-cost materials in the removal of Zn (II) ions from printing developer. Acta Technica Corviniensis 4, 61–66 (2011)

    Google Scholar 

  64. Cao, W., Dang, Z., Yuan, B.-L., Shen, C.-H., Kan, J., Xue, X.-L.: Sorption kinetics of sulphate ions on quaternary ammonium-modified rice straw. J. Ind. Eng. Chem. 20(4), 2603–2609 (2014). doi:10.1016/j.jiec.2013.10.047

    Article  Google Scholar 

  65. Inglezakis, V., Poulopoulos, S.: Adsorption, Ion Exchange and Catalysis: Design of Operations and Environmental Applications, vol. 3. Elsevier B.V, Amsterdam (2006)

    Google Scholar 

  66. Štrkalj, A., Glavaš, Z., Brnardić, I.: Application of foundry waste for adsorption of hexavalent chromium. Chem. Biochem. Eng. Q. 27(1), 15–19 (2013)

    Google Scholar 

  67. Ho, Y.-S., Chiang, T.-H., Hsueh, Y.-M.: Removal of basic dye from aqueous solution using tree fern as a biosorbent. Process Biochem. 40(1), 119–124 (2005)

    Article  Google Scholar 

  68. Vázquez, G., Fernández-Bea, R., Freire, M.S., González-Álvarez, J., Antorrena, G.: Determination of equilibrium, kinetic and thermodynamic parameters for the adsorption of cadmium (II) onto Castanea sativa shell. In: European Congress of Chemical Engineering (ECCE-6), Copenhagen, 16–20 Sept 2007

  69. Alam, M.Z., Muyibi, S.A., Mansor, M.F., Wahid, R.: Removal of phenol by activated carbons prepared from palm oil mill effluent sludge. J. Environ. Sci. 18(3), 446–452 (2006)

    Google Scholar 

  70. Husin, N.I., Wahab, N.A.A., Isa, N., Boudville, R.: Sorption equilibrium and kinetics of oil from aqueous solution using banana pseudostem fibers. In: International Conference on Environment and Industrial Innovation (ICEII 2011). IACSIT Press (2011)

Download references

Acknowledgments

The authors are grateful to the Ministry of Higher Education (MOHE) Malaysia, for partially financing the research project under the Fundamental Research Grant Scheme (FRGS13-029-0270) and also to Sime Darby for their support in EFB and BPOME sampling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mutiu K. Amosa.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Amosa, M.K., Jami, M.S. & Alkhatib, M.F.R. Electrostatic Biosorption of COD, Mn and H2S on EFB-Based Activated Carbon Produced through Steam Pyrolysis: An Analysis Based on Surface Chemistry, Equilibria and Kinetics. Waste Biomass Valor 7, 109–124 (2016). https://doi.org/10.1007/s12649-015-9435-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9435-7

Keywords

Navigation