Waste and Biomass Valorization

, Volume 7, Issue 1, pp 31–57 | Cite as

Valorization of MSW-to-Energy in Thailand: Status, Challenges and Prospects

  • Rotchana Intharathirat
  • P. Abdul Salam


In order to effectively plan MSW management with energy recovery activities, it is important to understand and assess the current situation and highlight issues, problems, as well as the initiatives under taken. This study aims to review and assess the overall commercial WTE plants in Thailand and compare the same with other countries based on available literature, interviews and site visits. The status, challenges and prospects of WTE technologies such as landfill gas, anaerobic digestion, incineration, gasification and RDF are discussed. The existing WTE plants treat 2.54 Mt of MSW per year (9.5 % of total 26.8 Mt generated in 2013) and generate 66 MW of electricity as well as 78.26 ktoe of heat. It is estimated that about 8.17 Mt of MSW (30.5 %) will be treated which will generate 319 MW of electricity as well as 78.26 ktoe of heat when the plants presently under construction and planning stage start operation. RDF and incineration have been identified as suitable technologies for treating MSW in Thailand. RDF technology preserves resources in MSW through recycling and energy recovery. It has high potential for co-firing with other fuels in many industries as well as using in other WTE technologies such as incineration and gasification. Incineration treats and reduces large amount of MSW with high potential to generate electricity and requires minimal pre-treatment.


Waste-to-energy MSW Thermal treatment Biological treatment RDF Thailand 



One of the authors, Rotchana Intharathirat, would like to thank Energy Policy & Planning Office (EPPO), Ministry of Energy, Thailand, for providing the King HRD scholarship for her PhD study at the Asian Institute of Technology. The author acknowledges the support provided by the Ministry of Natural Resources and Environment, Thailand. The author also thanks Mr. Bijay Bahadur Pradhan for his assistance.


  1. 1.
    Demirbas, Fatih., Balat, M., Balat, H.: Biowastes-to-biofuels. Energy Convers. Manag. 52(4), 1815–1828 (2011). doi: 10.1016/j.enconman.2010.10.041 CrossRefGoogle Scholar
  2. 2.
    Fredrickson, T.: Landfill fire battle not yet won. In: Bangkok Post. (2014). Accessed 17 Oct 2014
  3. 3.
    DoE, U.: Landfill Gas Sequestration in Kansas. (2008). Accessed 10 Dec 2014
  4. 4.
    Chiemchaisri, C., Juanga, J.P., Visvanathan, C.: Municipal solid waste management in Thailand and disposal emission inventory. Env. Monit. Assess. 135(1–3), 13–20 (2007). doi: 10.1007/s10661-007-9707-1 CrossRefGoogle Scholar
  5. 5.
    Kothari, R., Tyagi, V.V., Pathak, A.: Waste-to-energy: a way from renewable energy sources to sustainable development. Renew. Sustain. Energy Rev. 14(9), 3164–3170 (2010). doi: 10.1016/j.rser.2010.05.005 CrossRefGoogle Scholar
  6. 6.
    Castaldi, M.J., Themelis, N.J.: The case for increasing the global capacity for waste to energy (WTE). Waste Biomass Valoriz. 1(1), 91–105 (2010). doi: 10.1007/s12649-010-9010-1 CrossRefGoogle Scholar
  7. 7.
    Zheng, L., Song, J., Li, C., Gao, Y., Geng, P., Qu, B., Lin, L.: Preferential policies promote municipal solid waste (MSW) to energy in China: current status and prospect. Renew. Sustain. Energy Rev. 36, 135–148 (2014)CrossRefGoogle Scholar
  8. 8.
    Kalyani, K.A., Pandey, K.K.: Waste to energy status in India: a short review. Renew. Sustain. Energy Rev. 31, 113–120 (2014). doi: 10.1016/j.rser.2013.11.020 CrossRefGoogle Scholar
  9. 9.
    Guziana, B., Song, H., Thorin, E., Dotzauer, E., Yan, J.: Policy based scenarios for waste-to-energy use: Swedish perspective. Waste Biomass Valoriz. 5(4), 679–688 (2013). doi: 10.1007/s12649-013-9262-7 CrossRefGoogle Scholar
  10. 10.
    Nagle, M., Habasimbi, K., Mahayothee, B., Haewsungcharern, M., Janjai, S., Müller, J.: Fruit processing residues as an alternative fuel for drying in Northern Thailand. Fuel 90(2), 818–823 (2011). doi: 10.1016/j.fuel.2010.10.003 CrossRefGoogle Scholar
  11. 11.
    Ali, G., Nitivattananon, V., Abbas, S., Sabir, M.: Green waste to biogas: renewable energy possibilities for Thailand’s green markets. Renew. Sustain. Energy Rev. 16(7), 5423–5429 (2012). doi: 10.1016/j.rser.2012.05.021 CrossRefGoogle Scholar
  12. 12.
    Chaya, W., Gheewala, S.H.: Life cycle assessment of MSW-to-energy schemes in Thailand. J. Clean. Prod. 15(15), 1463–1468 (2007). doi: 10.1016/j.jclepro.2006.03.008 CrossRefGoogle Scholar
  13. 13.
    Chaiprasert, P.: Biogas production from agricultural wastes in Thailand. J. Sustain. Energy Env. Spec. Issue 63, 65 (2011)Google Scholar
  14. 14.
    Aggarangsi, P., Tippayawong, N., Moran, J.C., Rerkkriangkrai, P.: Overview of livestock biogas technology development and implementation in Thailand. Energy Sustain. Dev. 17, 371–377 (2013). doi: 10.1016/j.esd.2013.03.004 CrossRefGoogle Scholar
  15. 15.
    Sharp, A., Sang-Arun, J.: A Guide for Sustainable Urban Organic Waste Management in Thailand: Combining Food, Energy, and Climate Co-Benefit. Asia-Pacific Network for Global Change Research (APN). (2012)
  16. 16.
    Udomsri, S., Petrov, M.P., Martin, A.R., Fransson, T.H.: Clean energy conversion from municipal solid waste and climate change mitigation in Thailand: waste management and thermodynamic evaluation. Energy Sustain. Dev. 15(4), 355–364 (2011). doi: 10.1016/j.esd.2011.07.007 CrossRefGoogle Scholar
  17. 17.
    Liamsanguan, C., Gheewala, S.H.: Environmental assessment of energy production from municipal solid waste incineration. Int. J. Life Cycle Assess. 12(7), 529–536 (2007). doi: 10.1065/lca2006.10.278 CrossRefGoogle Scholar
  18. 18.
    Taparugssanagorn, K., Yamamoto, K., Nakajima, F., Fukushi, K.: Evaluation of waste-to-energy technology: economic feasibility in incorporating into the integrated solid waste management system in Thailand. In: The IE Network Conference 2007Google Scholar
  19. 19.
    Thamavithya, M., Dutta, A.: An investigation of MSW gasification in a spout-fluid bed reactor. Fuel Process. Technol. 89(10), 949–957 (2008). doi: 10.1016/j.fuproc.2008.03.003 CrossRefGoogle Scholar
  20. 20.
    Chiemchaisri, C., Charnnok, B., Visvanathan, C.: Recovery of plastic wastes from dumpsite as refuse-derived fuel and its utilization in small gasification system. Bioresour. Technol. 101(5), 1522–1527 (2010). doi: 10.1016/j.biortech.2009.08.061 CrossRefGoogle Scholar
  21. 21.
    Wanichpongpan, W., Gheewala, S.H.: Life cycle assessment as a decision support tool for landfill gas-to energy projects. J. Clean. Prod. 15(18), 1819–1826 (2007). doi: 10.1016/j.jclepro.2006.06.008 CrossRefGoogle Scholar
  22. 22.
    Wang-Yao, K., Sirintornthep, T., Chiemchaisri, C., Gheewala, S.H., Nopharatana, A.: Seasonal variation of landfill methane emissions from seven solid waste disposal sites in central Thailand. In: The 2nd joint international conference on “Sustainable Energy and Environment (SEE 2006)” (2006)Google Scholar
  23. 23.
    Nithikul, J.: Potential of Refuse Derived Fuel Production from Bangkok Municipal Solid Waste. Asian Institute of Technology, Pathum Thani (2007). Accessed 3 June 2012
  24. 24.
    Tippayawong, N., Vichadee, S.: Feasibility assessment of RDF utilization for power generation in Thailand. Int. J. Renew. Energy 4(1), 27–32 (2009)Google Scholar
  25. 25.
    Prechthai, T., Visvanathan, C., Chiemchaisri, C.: RDF production potential of municipal solid waste. In: The 2nd Joint International Conference on “Sustainable Energy and Encironment (SEE 2006)” (2006)Google Scholar
  26. 26.
    Nithikul, J., Karthikeyan, O.P., Visvanathan, C.: Reject management from a mechanical biological treatment plant in Bangkok, Thailand. Resour. Conserv. Recycl. 55(4), 417–422 (2011). doi: 10.1016/j.resconrec.2010.11.004 CrossRefGoogle Scholar
  27. 27.
    Kaosol, T.: Sustainable solutions for municipal solid waste management in Thailand. World academy of science, engineering and technology, Thailand (2009). Accessed 12 Oct 2013
  28. 28.
    Ngoc, U.N., Schnitzer, H.: Sustainable solutions for solid waste management in Southeast Asian countries. Waste Manag. 29(6), 1982–1995 (2009). doi: 10.1016/j.wasman.2008.08.031 CrossRefGoogle Scholar
  29. 29.
    Menikpura, S.N.M., Gheewala, S.H., Bonnet, S., Chiemchaisri, C.: Evaluation of the effect of recycling on sustainability of municipal solid waste management in Thailand. Waste Biomass Valoriz. 4(2), 237–257 (2012). doi: 10.1007/s12649-012-9119-5 CrossRefGoogle Scholar
  30. 30.
    PCD: “Thailand State of Solid Waste” Reports in year 2013. Pollution Control Department, Thailand (2014)Google Scholar
  31. 31.
    PCD: PCD Annual ‘Thailand State of Pollution’ Reports in year 2012. Pollution Control Department, Thailand (2013)Google Scholar
  32. 32.
    PCD: Measures and solutions to manage solid waste and hazardous waste. In: Department, P.C. (eds.) The proposed document for the National Council for Peace and Order (NCPO), Pollution Control Department (PCD), Thailand (2014).
  33. 33.
    APO: Solid waste management: issues and challenges in Asia. In: Centre, E.M. (eds.). Asian Productivity Organization, (2007). Accessed 13 May 2014
  34. 34.
    Meidiana, C.: Development of waste management practices in Indonesia. Eur. J. Sci. Res. 40(2), 199–210 (2010)Google Scholar
  35. 35.
    AIT: Municipal Solid Waste Management in Asia. Asian Regional Research Program on Environmental Technology (ARRPET). Asian Institute of Technology, Pathum Thani (2004). Accessed 27 Mar 2013
  36. 36.
    Shekdar, A.V.: Sustainable solid waste management: an integrated approach for Asian countries. Waste Manag. 29(4), 1438–1448 (2009). doi: 10.1016/j.wasman.2008.08.025 CrossRefGoogle Scholar
  37. 37.
    PCD: Final rEport of Surveying and Analysis of Municipal Solid Waste Composition Across the Country Project. Pollution Control Department, Thailand (2004)Google Scholar
  38. 38.
    Cheng, H., Hu, Y.: Municipal solid waste (MSW) as a renewable source of energy: current and future practices in China. Bioresour. Technol. 101(11), 3816–3824 (2010). doi: 10.1016/j.biortech.2010.01.040 CrossRefGoogle Scholar
  39. 39.
    Hossain, H.M.Z., Hossain, Q.H., Monir, M.M.U.: Municipal solid waste (MSW) as a source of renewable energy in Bangladesh: revisited. Renew. Sustain. Energy Rev. 39, 35–41 (2014)CrossRefGoogle Scholar
  40. 40.
    Vanapruk, P.: Improvement of Municipal Solid Waste Management Policy in Thailand. Prince of Songkla University, Songkhla (2012). Accessed 1 Aug 2014
  41. 41.
    PCD: Roadmap of MSW and hazardous wastes management. In: Department, P.C. (eds.). (2014). Accessed 9 Jan 2015
  42. 42.
    PCD: Guidelines and technical documents related to solid waste management and hazardous waste. In: Department, P.C. (eds.). (2014). Accessed 9 Jan 2015
  43. 43.
    PCD: PCD Annual ‘Thailand State of Pollution’ Reports in year 2002–2011. Pollution Control Department, Thailand (2003–2012)Google Scholar
  44. 44.
    Shapkota, P., Coowanitwong, N., Visvanathan, C., Traenkler, J.: Potenitals of Recycling MSW in Asia vis-a-vis Recycling in Thailand. (2006). Accessed 5 May 2013
  45. 45.
    PCD: PCD Annual ‘Thailand State of Pollution’ Reports in year 2013. Pollution Control Department, Thailand (2014)Google Scholar
  46. 46.
    Singhirunnusorn, W., Donlakorn, K., Kaewhanin, W.: Contextual factors influencing household recycling behaviours: a case of waste bank project in Mahasarakham municipality. AcE-Bs 2011. Bandung 36, 688–697 (2012)Google Scholar
  47. 47.
    Suttibak, S., Nitivattananon, V.: Assessment of factors influencing the performance of solid waste recycling programs. Resour. Conserv. Recycl. 53(1–2), 45–56 (2008). doi: 10.1016/j.resconrec.2008.09.004 CrossRefGoogle Scholar
  48. 48.
    Seo, Y.: Current MSW Management and Waste-to-Energy Status in the Republic of Korea. Columbia University, Newyork (2013)Google Scholar
  49. 49.
    Chung, D.: Asia Pacific Workshop on Global Partnership on Waste Management: Mapping Needs and Activiities on Waste Management. In: Office, D.o.I.D.a.P. (ed.). UNEP, (2012).
  50. 50.
    Themelis, N.J., Mussche, C.: Municipal solid waste management and waste-to-energy in the United States, China and Japan. In: 2nd International Academic Symposium on Enhanced Landfill Mining, Houthalen-Helchteren 2013Google Scholar
  51. 51.
    ONEP: A Guideline: The Action Plan for Environmental Management in Provincial Level. Office of Natural Resources and Environmental Policy and Planning, Bangkok (2011)Google Scholar
  52. 52.
    ONEP: A Guide of Preparation for the Proposed Project to Obtain the Financial Support from the Environmental Fund. Office of Natural Resources and Environmental Policy and Planning, Bangkok (2013)Google Scholar
  53. 53.
    Chotichananthawewong, Q., Thongplew, N.: Development Trajectory, Emission Profile, and Policy Actions: Thailand ADBI Working Paper 352. Asian Development Bank Institute, Tokyo (2012)Google Scholar
  54. 54.
    Tongsopit, S., Greacen, C.: An assessment of Thailand’s feed-in tariff program. Renew. Energy 60, 439–445 (2013). doi: 10.1016/j.renene.2013.05.036 CrossRefGoogle Scholar
  55. 55.
    DEDE: Revision of the targets of Alternative Energy Development Plan (AEDP: 2012-2021) Department of Alternative Energy Development and Efficiency. (2014). Accessed 3 July 2014
  56. 56.
    EPPO: Policies for Purchasing of Electricity Generated from Renewable Energy by Feed-in-Tariff. Energy Policy and Planning Office. (2015)
  57. 57.
    Sutabutr, T.: Thailand as a Southeast Asia’s Largest Renewable Energy Market: New Potential’s Development and Waste-to-Renewable-Energy Conversion. Deputy Director General of Department of Alternative Energy Development and Efficiency (DEDE), Ministry of Energy (Waste-to-Energy Thailand 2012, Bangkok) (2012)Google Scholar
  58. 58.
    DEDE: Electricity and Heat Generation from Solid Waste Projects in Thailand. Department of Alternative Eenergy Development and Efficiency, Bangkok (2013). Accessed 2 Dec 2014
  59. 59.
    International Partnership on Mitigation and MRV. Integrating waste management and renewable energy planning, Thailand (2014). Accessed 16 Jan 2015
  60. 60.
    Limmeechokchai, B., Shrestha, R.M., Masui, T., Mausuoka, Y., Go, H.: Roadmap to Low Carbon Thailand towards 2050. In. Sirindhorn International Institute of Technology, Asian Institute of Technology, National Institute for Environmental Studies, Kyoto University, Mizuho Information & Research Institute, (2013)Google Scholar
  61. 61.
    World Bank, NESDB: Thailand: Clean Energy for Green Low-Carbon Growth. In. The World Bank & Office of the National Economic and Social Development Board, (2011)Google Scholar
  62. 62.
    TGO: Thailand CDM Projects which Approved and Received LoA: update on 21 November 2012. Thailand Greenhouse Gas Management Organization (Public Organization), Thailand. (2012)
  63. 63.
    UNFCCC: Project 3663: Active Synergy Landfill Gas Power Generation Project Nakhon Pathom. United Nations Framework Conversion on Climate Change. (2013)
  64. 64.
    UNFCCC: Project 3483: Bangkok Kamphaeng Saen West: Landfill Gas to Electricity Project United Nations Framework Conversion on Climate Change. (2013)
  65. 65.
    UNFCCC: Project 6000 : Jaroensompong Corporation Panomsarakham Landfill Gas to Energy Projec. United Nations Framework Conversion on Climate Change. (2013)
  66. 66.
    UNFCCC: Chiang Mai Landfill Gas to Electricity Project United Nations Framework Conversion on Climate Change. (2013)
  67. 67.
    UNFCCC: Project 1413 : Jaroensompong Corporation Rachathewa Landfill Gas to Energy Project United Nations Framework Conversion on Climate Change. (2013)
  68. 68.
    UNFCCC: Project 3462 : Bangkok Kamphaeng Saen East: Landfill Gas to Electricity Project. United Nations Framework Conversion on Climate Change. (2013)
  69. 69.
    Pharino, C., Jaranasaksakul, B.: CDM: A mechanism ot promote solid waste management efficiency and GHG reductions in Thailand. In: Paper presented at the Joint Actions on Climate Change, City of Aalborg, North Denmark, 8–10 June 2009Google Scholar
  70. 70.
    Kanasawat, U.: BOI Updates on New Incentives Schemes and Dimension of Investment Opportunities for Enhancing Waste-to-Energy Projects. In: Waste-to-Energy Thailand (2012)Google Scholar
  71. 71.
    Themelis, N.: Energy Recovery from Global Waste-to-Energy. 2006 Summer Review Issue of WMW (2006)Google Scholar
  72. 72.
    Tabata, T.: Waste-to-Energy Incineration Plants as Greenhouse Gas Reducers: A Case Study of Seven Japanese Metropolises. (2013). Accessed 31 Nov 2013
  73. 73.
    Mccrea, M., Tan, T.K., Ting, H.-h., Zuo, X.: A Cost-Benefit Analysis of Different Waste-to-Energy Technologies for the Management of Municipal Solid Waste in Singapore. The Pennsylvania State University. Accessed 8/05/2015
  74. 74.
    Ryu, C., Shin, D.: Combined heat and power from municipal solid waste: current status and issues in South Korea. Energies 6(1), 45–57 (2012). doi: 10.3390/en6010045 CrossRefGoogle Scholar
  75. 75.
    Zhang, D.Q., Tan, S.K., Gersberg, R.M.: Municipal solid waste management in China: status, problems and challenges. J. Environ. Manage. 91(8), 1623–1633 (2010). doi: 10.1016/j.jenvman.2010.03.012 CrossRefGoogle Scholar
  76. 76.
    Aprilia, A., Tezuka, T., Spaargaren, G.: Municipal Solid Waste Management and Waste-to-energy in Indonesia: A Policy Review. In: International Renewable Energy Symposium, Hanoi, Vietnam, Sept 2010Google Scholar
  77. 77.
    Noor, Z.Z., Yusuf, R.O., Abba, A.H., Abu Hassan, M.A., Mohd Din, M.F.: An overview for energy recovery from municipal solid wastes (MSW) in Malaysia scenario. Renew. Sustain. Energy Rev. 20, 378–384 (2013). doi: 10.1016/j.rser.2012.11.050 CrossRefGoogle Scholar
  78. 78.
    Abas, M.A., Wee, S.T.: Municipal Solid Waste Management in Malaysia: An Insight Towards Sustainability. In: Paper Presented at the 4th International Conference on Human Habitat & Environment 2014, Universiti Kebangsaan MalaysiaGoogle Scholar
  79. 79.
    Intharathirat, R., Abdul Salam, P., Kumar, S., Untong, A.: Forecasting of municipal solid waste quantity in a developing country using multivariate grey models. Waste Manag. 39, 3–14 (2015). doi: 10.1016/j.wasman.2015.01.026 CrossRefGoogle Scholar
  80. 80.
    PCD: Final Report: The Project of Efficiency Evaluation in Technology for Solid Waste Management. Development of Environment and Energy Foundation (2012)Google Scholar
  81. 81.
    PCD: Thailand Policy and Strategy for Waste Management (2008)Google Scholar
  82. 82.
    Arena, U.: Process and technological aspects of municipal solid waste gasification. Rev. Waste Manag. 32(4), 625–639 (2012). doi: 10.1016/j.wasman.2011.09.025 CrossRefMathSciNetGoogle Scholar
  83. 83.
    Bosmans, A., Vanderreydt, I., Geysen, D., Helsen, L.: The crucial role of waste-to-energy technologies in enhanced landfill mining: a technology review. J. Clean. Prod. 55, 10–23 (2012). doi: 10.1016/j.jclepro.2012.05.032 CrossRefGoogle Scholar
  84. 84.
    Suthapanich, W.: Characterization and Assessment of Municipal Solid Waste for Energy Recovery Options in Phetchaburi. Asian Institute of Technology, Pathum thani (2014)Google Scholar
  85. 85.
    ERC: Database of SPP and VSPP in Thailand. Energy Regulatory Commission, Thailand. (2014)
  86. 86.
    Hamad, T.A., Agll, A.A., Hamad, Y.M., Sheffield, J.W.: Solid waste as renewable source of energy: current and future possibility in Libya. Case Stud. Therm. Eng. 4, 144–152 (2014). doi: 10.1016/j.csite.2014.09.004 CrossRefGoogle Scholar
  87. 87.
    Surroop, D., Mohee, R.: Power Generation from Landfill Gas. In: 2nd International Conference on Environmental Engineering and Applications 17 (2011)Google Scholar
  88. 88.
    Bolan, N.S., Thangarajan, R., Seshadri, B., Jena, U., Das, K.C., Wang, H., Naidu, R.: Landfills as a biorefinery to produce biomass and capture biogas. Bioresour. Technol. 135, 578–587 (2013). doi: 10.1016/j.biortech.2012.08.135 CrossRefGoogle Scholar
  89. 89.
    Chen, Z., Gong, H., Jiang, R., Jiang, Q., Wu, W.: Overview on LFG projects in China. Waste Manag. 30(6), 1006–1010 (2010). doi: 10.1016/j.wasman.2010.02.001 CrossRefMATHGoogle Scholar
  90. 90.
    El-Fadel, M., Abi-Esber, L., Salhab, S.: Emission assessment at the Burj Hammoud inactive municipal landfill: viability of landfill gas recovery under the clean development mechanism. Waste Manag. 32(11), 2106–2114 (2012). doi: 10.1016/j.wasman.2011.12.027 CrossRefGoogle Scholar
  91. 91.
    Conestoga-Rovers & Associates: Landfill Gas Management Facilities. In: Design Guidelines. British Columbia Ministry of Environment (MOE) 2010Google Scholar
  92. 92.
    Dudek, J., Klimek, P., Kolodziejak, G., Niemczewska, J., Zaleska-Bartosz, J.: Landfill Gas Energy Technologies (2010)Google Scholar
  93. 93.
    SWICS: Current MSW industry position and state-of-the-practice on LFG collection efficiency, methane oxidation, and carbon sequestration in landfills. Solid Waste Industry for Climate Solutions (2007)Google Scholar
  94. 94.
    Latsios, H.V., Bereketidou, O.A., Charisiou, N.D., Goula, M.A.: Energy potential assessment of the biogas produced by an urban waste landfill in Northern Greece. In: Twelfth International Waste Management and Landfill Symposium, Margherita di Pula, Cagliari, Italy 2009. CISAGoogle Scholar
  95. 95.
    Stöglehner, G.: Ecological footprint—a tool for assessing sustainable energy supplies. J. Clean. Prod. 11, 267–277 (2003)CrossRefGoogle Scholar
  96. 96.
    Shin, H.-C., Park, J.-W., Kim, H.-S., Shin, E.-S.: Environmental and economic assessment of landfill gas electricity generation in Korea using LEAP model. Energy Policy 33(10), 1261–1270 (2005). doi: 10.1016/j.enpol.2003.12.002 CrossRefGoogle Scholar
  97. 97.
    Kumar, S.: Technology options for municipal solid waste-to-energy project. TERI Inf. Monit. Env. Sci. 5(1), 1–11 (2000)Google Scholar
  98. 98.
    Bove, R., Lunghi, P.: Electric power generation from landfill gas using traditional and innovative technologies. Energy Convers. Manag. 47(11–12), 1391–1401 (2006). doi: 10.1016/j.enconman.2005.08.017 CrossRefGoogle Scholar
  99. 99.
    PEA: Status of renewable energy from wastes projects having applied for adders. Provincial Electricity Authority, Thailand (2013)Google Scholar
  100. 100.
    Yedla, S., Parikh, J.K.: Development of a purpose built landfill system for the control of methane emissions from municipal solid waste. Waste Manag. 22, 501–506 (2002)CrossRefGoogle Scholar
  101. 101.
    Wang-Yao, K., Towprayoon, S., Jaroenpoj, S.: Estimation of landfill gas production using pumping test. In: Paper Presented at the Joint International Conference on “Sustainable Energy and Environment (SEE), Hua Hin, Thailand, 1–3 Dec 2004Google Scholar
  102. 102.
    Thanombun, P.: Landfilling Management and Utilization of Landfill Gas for Electricity Generation. Environmental Engineer of Tha Chiang Thong Co., Ltd. Power Plant (2013)Google Scholar
  103. 103.
    Tchobanoglous, G., Theisen, H., Vigil, S.: Integrated Solid Waste Management. Engineering Principles and Management Issues, McGraw-Hill (1993)Google Scholar
  104. 104.
    USEPA: Facts about Landfill Gas. United States Environmental Protection Agency, Washington (2000). Accessed 23 July 2013
  105. 105.
    Ahmed, S.I., Johari, A., Hashim, H., Mat, R., Lim, J.S., Ngadi, N., Ali, A.: Optimal landfill gas utilization for renewable energy production. Env. Prog. Sustain. Energy 34(1), 289–296 (2015). doi: 10.1002/ep.11964 CrossRefGoogle Scholar
  106. 106.
    Jaroensompong Corporation Company: Experience in the Development of Landfill Gas to Electricity and CDM Project. Thailand Greenhouse Gas Management Organization (TGO), Thailand (2009).
  107. 107.
    Khalid, A., Arshad, M., Anjum, M., Mahmood, T., Dawson, L.: The anaerobic digestion of solid organic waste. Waste Manag. 31(8), 1737–1744 (2011). doi: 10.1016/j.wasman.2011.03.021 CrossRefGoogle Scholar
  108. 108.
    Abbasi, T., Tauseef, S.M., Abbasi, S.A.: Anaerobic digestion for global warming control and energy generation—an overview. Renew. Sustain. Energy Rev. 16(5), 3228–3242 (2012). doi: 10.1016/j.rser.2012.02.046 CrossRefGoogle Scholar
  109. 109.
    Nguyen, H.H., Heaven, S., Banks, C.: Energy potential from the anaerobic digestion of food waste in municipal solid waste stream of urban areas in Vietnam. Int. J. Energy Env. Eng. (2014). doi: 10.1007/s40095-014-0133-1 Google Scholar
  110. 110.
    Divya, D., Gopinath, L.R., Merlin Christy, P.: A review on current aspects and diverse prospects for enhancing biogas production in sustainable means. Renew. Sustain. Energy Rev. 42, 690–699 (2015). doi: 10.1016/j.rser.2014.10.055 CrossRefGoogle Scholar
  111. 111.
    Braber, K.: Anaerobic digestion of municipal solid waste: a modern waste disposal option on the verge of breakthrough. Biomass Bioenergy 9(1–5), 365–376 (1995)CrossRefGoogle Scholar
  112. 112.
    Murphy, J.D., McKeogh, E.: Technical, economic and environmental analysis of energy production from municipal solid waste. Renew. Energy 29(7), 1043–1057 (2004). doi: 10.1016/j.renene.2003.12.002 CrossRefGoogle Scholar
  113. 113.
    Baldasano, J.M., Soriano, C.: Emission of greenhouse gases from anaerobic digestion processes. Comparison with other MSW treatments. Water Sci. Technol. 41(3), 275–283 (2000)Google Scholar
  114. 114.
    Ofoefule, A.U., Nwankwo, J.I., Ibeto, C.N.: Biogas production from paper waste and its blend with cow dung. Adv. Appl. Sci. Res. 1(2), 1–8 (2010)Google Scholar
  115. 115.
    Yadav, K.D., Jadav, N., Ganvit, B.: Comparison of technologies on economic aspects for municipal solid waste processing. Indian J. Env. Prot. 31(8), 684–690 (2011)Google Scholar
  116. 116.
    Curry, N., Pillay, P.: Biogas prediction and design of a food waste to energy system for the urban environment. Renew. Energy 41, 200–209 (2012)CrossRefGoogle Scholar
  117. 117.
    Deublein, D., Steinhauser, A.: Biogas from Waste and Renewable Resources. An Introduction. Wiley, Newyork (2008)CrossRefGoogle Scholar
  118. 118.
    Singh, R.P., Tyagi, V.V., Allen, T., Ibrahim, M.H., Kothari, R.: An overview for exploring the possibilities of energy generation from municipal solid waste (MSW) in Indian scenario. Renew. Sustain. Energy Rev. 15(9), 4797–4808 (2011). doi: 10.1016/j.rser.2011.07.071 CrossRefGoogle Scholar
  119. 119.
    Sakawi, Z.: Municipal solid waste management in Malaysia: solution for sustainable waste management. J. Appl. Sci. Env. Sanit. 6(1), 29–38 (2011)Google Scholar
  120. 120.
    Stantec: Waste to Energy: A Technical Review of Municipal Solid Waste Thermal Treatment Practices. Final Report (2011)Google Scholar
  121. 121.
    Vogg, H., Metzger, M., Stieglitz, L.: Recent findings on the formation and decomposition of PCDD/PCDF in municipal solid waste incineration. Waste Manag. Res. 5(3), 285–294 (1987). doi: 10.1016/0734-242X(87)90080-2 CrossRefGoogle Scholar
  122. 122.
    Tsai, W., Chou, Y.H.: An overview of renewable energy utilization from municipal solid waste (MSW) incineration in Taiwan. Renew. Sustain. Energy Rev. 10(5), 491–502 (2006). doi: 10.1016/j.rser.2004.09.006 CrossRefGoogle Scholar
  123. 123.
    Tsai, W., Kuo, K.-C.: An analysis of power generation from municipal solid waste (MSW) incineration plants in Taiwan. Energy 35(12), 4824–4830 (2010). doi: 10.1016/ CrossRefGoogle Scholar
  124. 124.
    Krook, J., Svensson, N., Eklund, M.: Landfill mining: a critical review of two decades of research. Waste Manag. 32(3), 513–520 (2012). doi: 10.1016/j.wasman.2011.10.015 CrossRefGoogle Scholar
  125. 125.
    Au, I.E.W.K.: International and regional trends on thermal and organic waste treatment. In: Seminar on Waste-to-Energy for municipal solid waste treatment (2014)Google Scholar
  126. 126.
    Phuket Municipality: The Report of Situation and Problems of Solid Waste Management in Phuket Municipality (2013)Google Scholar
  127. 127.
    Fabry, F., Rehmet, C., Rohani, V., Fulcheri, L.: Waste gasification by thermal plasma: a review. Waste Biomass Valoriz. 4(3), 421–439 (2013). doi: 10.1007/s12649-013-9201-7 CrossRefGoogle Scholar
  128. 128.
    Gesell, G., Fryklind, K., Spott, B.: Case study of WTE and Gasification. In: 16th Annual North American Waste-to-Energy Conference, Philadelphia, Pennsylvania, USA 2008 ASMEGoogle Scholar
  129. 129.
    IISc: Final report on the MNES sponsored project advanced biomass gasification. In. Combustion Gasification & Propulsion Lab, Department of Aerospace Engineering, Indian Institute of Science, (2000–2004)Google Scholar
  130. 130.
    Wu, C.Z., Huang, H., Zheng, S.P., Yin, X.L.: An economic analysis of biomass gasification and power generation in China. Bioresour. Technol. 83(1), 65–70 (2002). doi: 10.1016/S0960-8524(01)00116-X CrossRefGoogle Scholar
  131. 131.
    NRI: Policies for renewable energies/biomass in India. The Energy and Resources Institute (TERI), New Delhi (2012).
  132. 132.
    Niessen, W.R., Markes, C.H., Sommerlad, R.E.: Evaluation of gasification and novel thermal processes for the treatment of municipal solid waste. National Renewable Energy Laboratory, Colorado (1996). Accessed 9 Apr 2012
  133. 133.
    Gendebien, A., Leavens, A., Blackmore, K., Godley, A., Lewin, K., Whiting, K.J., Davis, R., Giegrich, J., Fehrenbach, H., Gromke, U., Bufalo, N.d., Hogg, D.: Refuse Derived Fuel, Current Practice and Perspectives (B4-3040/2000/306517/MAR/E3). European Commission-Directorate General Environment (2003)Google Scholar
  134. 134.
    Di Lonardo, M.C., Lombardi, F., Gavasci, R.: Characterization of MBT plants input and outputs: a review. Rev. Env. Sci. Biotechnol. 11(4), 353–363 (2012). doi: 10.1007/s11157-012-9299-2 CrossRefGoogle Scholar
  135. 135.
    Caputo, A.C., Pelagagge, P.M.: RDF production plants: i design and costs. Appl. Therm. Eng. 22, 423–437 (2002)CrossRefGoogle Scholar
  136. 136.
    Kara, M.: Environmental and economic advantages associated with the use of RDF in cement kilns. Resour. Conserv. Recycl. 68, 21–28 (2012). doi: 10.1016/j.resconrec.2012.06.011 CrossRefGoogle Scholar
  137. 137.
    Aimmanee, J.: Solid Waste Management of SCG Cement. Pollution Control Department (PCD), Thailand. (2012)
  138. 138.
    Gendebien, A., Leavens, A., Blackmore, K., Godley, A., Lewin, K., Whiting, K.J., Giegrich, J., Fehrenbach, H., Gromke, U., Bufalo, N.d., Hogg, D.: Refure Derived Fuel, Current Practice and Perspectives (B4-3040/2000/306517/MAR/E3). European Commission-Directorate General Environment. (2003)Google Scholar
  139. 139.
    Lamas, W.d.Q., Palau, J.C.F., Camargo, J.R.d.: Waste materials co-processing in cement industry: ecological efficiency of waste reuse. Renew. Sustain. Energy Rev. 19, 200–207 (2013). doi: 10.1016/j.rser.2012.11.015 CrossRefGoogle Scholar
  140. 140.
    Rattanaruedeerom, S.: Solid waste management of TPI Polene Co., Ltd Pollution Control Department (PCD), Thailand. (2012)
  141. 141.
    Sriworanart, K.: Solid Waste Management of Siam City Cement Public Co., Ltd (SCCC). Pollution Control Department (PCD), Thailand. (2012)

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Energy Field of Study, School of Environment, Resources and DevelopmentAsian Institute of TechnologyPathumthaniThailand

Personalised recommendations