Skip to main content
Log in

Statistical Analysis to Correlate Bio-physical and Chemical Characteristics of Organic Wastes and Digestates to Their Anaerobic Biodegradability

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Solid waste biodegradability is a key parameter to control and optimize high solid anaerobic digestion (HSAD) of biowaste (BW) and residual municipal solid waste (RMSW). It enables to assess the biomethane potential and the biostability achieved by the process. The objective of this study was to correlate the biochemical methane potential (BMP) with selected analytical parameters commonly used to predict bioreactivity of solid organic samples, such as global analyses (VS, TOC, CODTot N-TKN), biochemical analyses (humic substance index, Van Soest fractionation method, total lipid content, and total protein content), leaching behaviour (VFA, CODSol, N-TKN and N-NH3), and respirometric activity (i.e. BOD on solid samples suspended in liquid medium, for this study). The data set was obtained by analysing the parameters listed above for two RMSW and two BW, collected from three full-scale HSAD plants, and their respective digestates produced by the selected plants (i.e. altogether 4 wastes and 4 digestates). The principal component analysis showed that VS, COD, and TOC were partly redundant and that the set of parameters could be significantly reduced. Predicting anaerobic bioreactivity from single biochemical parameters such as the Van Soest fractions was not found relevant. On the opposite, the residual fraction RES and HSI were the most correlated to BMP and BOD. These two variables constitute good indicators for the description of the bioreactivity (and biostability) of the samples, and could be used to predict it.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BDAero :

Bioconversion yield in aerobic condition (%COD)

BDAnae :

Bioconversion yield in anaerobic condition (%COD)

BW:

Biowaste

BOD:

Biological oxygen demand on suspended solid in liquid phase. 28 days of incubation \( ({\text{mg}}_{{{\text{O}}_{ 2} }} \,{\text{g}}_{{{\text{TS}}\,{\text{or}}\,{\text{VS}}}}^{ - 1} ) \)

BMP:

Biomethane potential on suspended material. 60 days of incubation \( ({\text{NmL}}\,{\text{g}}_{{{\text{TS}}\,{\text{or}}\,{\text{VS}}}}^{ - 1} ) \)

CELL:

Cellulose (%VS)

CODTot :

Chemical oxygen demand on solid material \( ({\text{mg}}_{{{\text{O}}_{ 2} }} \,{\text{g}}_{\text{TS}}^{ - 1} ) \)

CODSol :

Chemical oxygen demand on leachate collected from leaching test (L/S ratio = 10) on solid material, filtration at 0.45 µm \( ({\text{mg}}_{{{\text{O}}_{ 2} }} \,{\text{g}}_{\text{TS}}^{ - 1} ) \)

D:

Digestate

DRI:

Dynamic respiration index

HSAD:

High solid anaerobic digestion

HEM:

Hemicelluloses (%VS)

HSI:

Humic’like substance Index

LIP:

Lipids content (%VS)

PCA:

Principal component analysis

PROT:

Proteins (%VS)

RES:

Non extractable organic matter, from Van Soest fractionation method (%VS)

RMSW:

Residual municipal solid waste

S:

Substrate

SOL:

Soluble fraction (%VS) extracted with the neutral detergent NDS

SOUR:

Specific oxygen uptake rate

TOC:

Total organic carbon

TS:

Total solid (%wS)

VFA:

Volatile fatty acids (VFA)

VS:

Volatile solid (%TS)

wS:

Wet solid

References

  1. EurObserv’ER (2013). http://www.energies-renouvelables.org/observ-er/stat_baro/barobilan/barobilan13-fr.pdf

  2. Chandler, J.A., Jewell, W.J., Gossett, J.M.: Predicting methane fermentation biodegradability. Biotechnol. Bioengin. Symp. Ser. 10, 93–107 (1980)

    Google Scholar 

  3. Buffière, P., Loisel, D., Bernet, N., Delgenes, J.-P.: Towards new indicators for the prediction of solid waste anaerobic digestion properties. Water Sci. Technol. 53(8), 233–241 (2006)

    Article  Google Scholar 

  4. Schievano, A., Pognani, M., D’Imporzano, G., Adani, F.: Predicting anaerobic biogasification potential of ingestates and digestates of a full-scale biogas plant using chemical and biological parameters. Bioresour. Technol. 99, 8112–8117 (2008)

    Article  Google Scholar 

  5. Schievano, A., Scaglia, B., D’Imporzano, G., Malagutti, L., Gozzi, A., Adani, F.: Prediction of biogas potentials using quick laboratory analyses: upgrading previous models for application to heterogeneous organic matrices. Biores. Technol. 100, 5777–5782 (2009)

    Article  Google Scholar 

  6. Mottet, A., François, E., Latrille, E., Steyer, J.P., Déléris, S., Vedrenne, F., Carrère, H.: Estimating anaerobic biodegradability indicators for waste activated sludge. Chem. Eng. J. 160(2), 488–496 (2010)

    Article  Google Scholar 

  7. Monlau, F., Sambusiti, C., Barakat, A., Guo, X.M., Latrille, E., Trably, E., Steyer, J.P., Carrere, H.: Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environ. Sci. Technol. 46(21), 12217–12225 (2012)

    Article  Google Scholar 

  8. de Araújo Morais, J., Ducom, G., Achour, F., Rouez, M., Bayard, R.: Mass balance to assess the efficiency of a mechanical-biological treatment. Waste Manag. 28(10), 1791–1800 (2008)

    Article  Google Scholar 

  9. Cossu, R., Raga, R.: Test methods for assessing the biological stability of biodegradable waste. Waste Manag. 28, 381–388 (2007)

    Article  Google Scholar 

  10. Barrena, R., d’Imporzano, G., Ponsá, S., Gea, T., Artola, A., Vázquez, F., Sánchez, A., Adani, F.: In search of a reliable technique for the determination of the biological stability of the organic matter in the mechanical–biological treated waste. J. Hazard. Mater. 169, 1065–1072 (2009)

    Article  Google Scholar 

  11. Bayard, R., Morais de Araujo, J., Ducom, G., Achour, F., Rouez, M., Gourdon, R.: Assessment of the effectiveness of an industrial unit of mechanical-biological treatment of municipal solid waste. J. Hazard. Mater. 175(1–3), 23–32 (2010)

    Article  Google Scholar 

  12. Van Praagh, M., Heerenklage, J., Smidt, E., Modin, H., Stegmann, R., Persson, K.M.: Potential emissions from two mechanically–biologically pretreated (MBT) wastes. Waste Manag. 29, 859–868 (2009)

    Article  Google Scholar 

  13. Scaglia, B., Adani, F.: An index for quantifying the aerobic reactivity of municipal solid wastes and derived waste products. Sci. Total Environ. 394, 183–191 (2008)

    Article  Google Scholar 

  14. Raposo, F., De la Rubia, M.A., Fernández-Cegrí, V., Borja, R.: Anaerobic digestion of solid organic substrates in batch mode: an overview relating to methane yields and experimental procedures. Renew. Sustain. Energy Rev. 16(1), 861–877 (2011)

    Article  Google Scholar 

  15. Noike, T., Endo, G., Chang, J.E., Yaguchi, J.I., Matsumoto, J.I.: Characteristics of carbohydrate degradation and the rate limiting step in anaerobic digestion. Biotechnol. Bioeng. 27, 1482–1485 (1985)

    Article  Google Scholar 

  16. Eleazer, W.E., Odle, W.S., Wang, Y.-S., Barlaz, M.A.: Biodegradability of municipal solid waste components in laboratory-scale landfills. Environ. Sci. Technol. 31(3), 911–917 (1997)

    Article  Google Scholar 

  17. Rodriguez, C., Hiligsmann, S., Ongena, M., Charlier, R., Thonart, P.: Development of an enzymatic assay for the determination of cellulose bioavailability in municipal solid waste. Biodegradation 16, 415–422 (2005)

    Article  Google Scholar 

  18. Stinson, J.A., Ham, R.K.: Effect of lignin on the anaerobic decomposition of cellulose as determined through the use of a biochemical methane potential method. Envion. Sci. Technol. 29, 2305–2310 (1995)

    Article  Google Scholar 

  19. Young, L.Y., Frazer, A.C.: The fate of lignin and lignin-derived compounds in anaerobic environments. Geomicrobiol. J. 5(3), 261–293 (1987)

    Article  Google Scholar 

  20. Tong, X., Smith, L.H., McCarty, P.L.: Methane fermentation of selected lignocellulosic materials. Biomass 21, 239–255 (1990)

    Article  Google Scholar 

  21. Gunaseelan, V.N.: Biochemical methane potential of fruit and vegetable solid waste feedstocks. Biomass Bioenergy 26, 389–399 (2004)

    Article  Google Scholar 

  22. Tambone, F., Genevini, P., D’Imporzano, G., Adani, F.: Assessing amendment properties of digestate by studying the organic matter composition and the degree of biological stability during the anaerobic digestion of the organic fraction of MSW. Bioresour. Technol. 100, 3140–3142 (2009)

    Article  Google Scholar 

  23. Kelly, R.J., Shearer, B.D., Kim, J., Goldsmith, C.D., Hater, G.R., Novak, J.T.: Relationships between analytical methods utilized as tools in the evaluation of landfill waste stability. Waste Manag. 26(12), 1349–1356 (2006)

    Article  Google Scholar 

  24. Valencia, R., van der Zon, W., Woelders, H., Lubberding, H.J., Gizen, H.J.: Achieving “Final Storage Quality” of municipal solid waste in pilot scale bioreactor landfills. Waste Manag. 29, 78–85 (2009)

    Article  Google Scholar 

  25. Scaglia, R., Confalonieri, G.D’Imporzano, Adani, A.: Estimating biogas production of biologically treated municipal solid waste. Bioresour. Technol. 101, 945–952 (2010)

    Article  Google Scholar 

  26. Gunaseelan, V.N.: Regression models of ultimate methane yields of fruits and vegetable solid wastes, sorghum and napiergrass on chemical composition. Bioresour. Technol. 98(6), 1270–1277 (2007)

    Article  Google Scholar 

  27. Ponsa, S., Gea, T., Alerm, L., Cerezo, J., Sanchez, A.: Comparison of aerobic and anaerobic stability indices through a MSW biological treatment process. Waste Manag. 28(12), 2735–2742 (2008)

    Article  Google Scholar 

  28. APHA: Standard Methods for the Examination of Water and Wastewater, 20th edn. American Public Health Association, Washington (1998)

    Google Scholar 

  29. Castaldi, P., Alberti, G., Merella, R., Melis, P.: Study of the organic matter evolution during municipal solid waste composting aimed at identifying suitable parameters for the evaluation of compost maturity. Waste Manag. 25, 209–213 (2005)

    Article  Google Scholar 

  30. Francou, C., Linères, M., Derenne, S., Villio-Poitrenaud, M.L., Houot, S.: Influence of green waste, biowaste and paper-cardboard initial ratios on organic matter transformations during composting. Bioresour. Technol. 99(18), 8926–8934 (2008)

    Article  Google Scholar 

  31. Achour, F. (2008) Caractérisation de la matière organique dans les ordures ménagères. Recherche d’indicateurs de stabilité. LGCIE, INSA de Lyon. Ecole Doctorale de Chimie de Lyon. 2008-ISAL-0058, 175pp

  32. AFNOR XP U44-162 (2005) Amendements organiques et supports de culture—Fractionnement biochimique et estimation de la stabilité biologique. Méthode de caractérisation de la matière organique par solubilisations successives

  33. Van Soest, P.J., Robertson, J.B., Lewis, B.A.: Methods for dietary fibers, neutral detergent fiber and non-starch polysaccharides in relation to animal nutrition. J. Dairy Sci. 74, 3583–3597 (1991)

    Article  Google Scholar 

  34. ISO 10707 (1994) Water quality—evaluation in an aqueous medium of the “ultimate” aerobic biodegradability of organic compounds—method by analysis of biochemical oxygen demand (closed bottle test)

  35. ISO 11734 (1995) Water quality—evaluation of the “ultimate” anaerobic biodegradability of organic compounds in digested sludge—method by measurement of the biogas production

  36. Triolo, J.M., Sommer, S.G., Maller, H.B., Weisbjerg, M.R., Jiang, X.Y.: A new algorithm to characterize biodegradability of biomass during anaerobic digestion: influence of lignin concentration on methane production potential. Bioresour. Technol. 102, 9395–9402 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the French National Research Agency (ANR) for funding this project through the Bioenergy program (Grant number no ANR-08-BIOE-009-03).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Bayard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bayard, R., Gonzalez-Ramirez, L., Guendouz, J. et al. Statistical Analysis to Correlate Bio-physical and Chemical Characteristics of Organic Wastes and Digestates to Their Anaerobic Biodegradability. Waste Biomass Valor 6, 759–769 (2015). https://doi.org/10.1007/s12649-015-9411-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9411-2

Keywords

Navigation