Skip to main content

Advertisement

Log in

High-Temperature Sensible Heat-Based Thermal Energy Storage Materials Made of Vitrified MSWI Fly Ashes

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

New materials for high-temperature thermal energy storage (TES) systems are highly needed today to enhance the development of adiabatic compressed air energy storage (ACAES) and concentrated solar power (CSP) processes. Vitro-ceramics obtained industrially by plasma torch vitrification of municipal solid waste incinerator fly ash have been studied and their major related properties characterized. As sensible heat-based TES materials, the glass form is relevant up to 600 °C, while the ceramic can be used up to 1100 °C. Their densities, thermal capacity, thermal conductivity, coefficient of thermal expansion and Young modulus fall within current ranges of values of refractory materials. Their major original advantages are their sustainable character, wide availability, wide operational temperature range up to 1100 °C and low cost. Considering their potential new use in TES, the energy payback of the plasma torch waste treatment is in the range of only 12 days for the ACAES and 1.6–7.4 months for CSP applications, respectively, before 35 years of expected operation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kuravi, S., Trahan, J., Goswami, D.Y., Rahman, M.M., Stefanakos, E.K.: Thermal energy storage technologies and systems for concentrating solar power plants. Prog. Energy Combust. Sci. 39, 285–319 (2013)

    Article  Google Scholar 

  2. Cosar, P., Etievant, C., Pouget-Abadie, X.: «La centrale électrosolaire THEMIS». Rev. Gén. Therm. Fr. 200–201, 627–638 (1978)

    Google Scholar 

  3. Pacheco, J.E.: “Final test and evaluation results from the Solar Two project”, SAND2002-0120. Sandia National Laboratories, Livermore (2002)

    Google Scholar 

  4. Herrmann, U., Kelly, B., Price, H.: Two-tank molten salt storage for parabolic trough solar power plants. Energy 29, 883–893 (2004)

    Article  Google Scholar 

  5. Valo, M.: En Andalousie, les conquistadors du soleil. Le Monde, Paris (2011). 8

    Google Scholar 

  6. Energy Technology Perspectives 2010: Scenarios and strategies to 2050, IEA International energy agency, OECD/IEA 2010. www.iea.org/boocks

  7. Kirk-Othmer Encyclopedia of Chemical Technology, Wiley, London, ISBN: 9780471238966, doi:10.1002/0471238961

  8. Py, X., Calvet, N., Olives, R., Meffre, A., Echegut, P., Bessada, C., Veron, E., Ory, S.: Recycled material for sensible heat based thermal energy storage to be used in concentrated solar thermal power plants. J. Sol. Energy Eng. 133, 1–8 (2011)

    Article  Google Scholar 

  9. Faik, A., Guillot, S., Lambert, J., Veron, E., Ory, S., Bessada, C., Echegut, P., Py, X.: Thermal storage material from inertized wastes: evolution of structural and radiative properties with temperature. Sol. Energy 86, 139–146 (2012)

    Article  Google Scholar 

  10. Chimenos, J.M., Fernandez, A.I., Nadal, R., Espiell, F.: Short-term natural weathering of MSWI bottom ash. J. Hazard. Mater. B79, 287–299 (2000)

    Article  Google Scholar 

  11. Ahmaruzzaman, M.: A review on the utilization of fly ash. Prog. Energy Combust. Sci. 36, 327–363 (2010)

    Article  Google Scholar 

  12. Rawlings, R.D., Wu, J.P., Boccaccini, A.R.: Glass-ceramics: their production from wastes—a review. J. Mater. Sci. 41, 733–761 (2006)

    Article  Google Scholar 

  13. Menu O.: SIDETOM DIP 2005 public annual activity report. (2006)

  14. Wang, Q., Yan, J.H., Chi, Y., Li, X.D., Lu, S.Y.: Application of thermal plasma to vitrify fly ash from municipal solid waste incinerators. Chemosphere 78, 626–630 (2010)

    Article  Google Scholar 

  15. Wang, Q., Yan, J., Tu, X., Chi, Y., Li, X., Lu, S., Cen, K.: Thermal treatment of municipal solid waste incinerator fly ash using DC double argon plasma. Fuel 88, 955–958 (2009)

    Article  Google Scholar 

  16. Park, J.S., Taniguchi, S., Park, Y.J.: Alkali borosilicate glass by fly ash from a coal-fired power plant. Chemosphere 74, 320–324 (2009)

    Article  Google Scholar 

  17. Romero, M., Rawlings, R.D., Rincon, J.M.: Crystal nucleation and growth in glasses from inorganic wastes from urban incineration. J. Non Cryst. Solids 271, 106–118 (2000)

    Article  Google Scholar 

  18. Yang, J., Xiao, B., Boccaccini, A.R.: Preparation of low melting glass-ceramics from municipal waste incineration fly ash. Fuel 88, 1275–1280 (2009)

    Article  Google Scholar 

  19. Gomez-Barea, A., Vilches, L.F., Leiva, C., Campoy, M., Fernandez-Pereira, C.: Plant optimization and ash recycling in fluidized bed waste gasification. Chem. Eng. J. 146, 227–236 (2009)

    Article  Google Scholar 

  20. Peng, Z., Guohua, N., Yiman, J., Longwei, C., Mingzhou, C., Yuedong, M.: Destruction of inorganic municipal solid waste incinerator fly ash in a DC arc plasma furnace. J. Hazard. Mater. 181, 580–585 (2010)

    Article  Google Scholar 

  21. Jae-Myung, K., Hyung-Sun, K.: Glass-ceramic produced from a municipal waste incinerator fly ash with high Cl content. J. Eur. Ceram. Soc. 24, 2373–2382 (2004)

    Article  Google Scholar 

  22. Sakai, S.I., Hiraoka, M.: Municipal solid waste incinerator residue recycling by thermal processes. Waste Manag. 20, 249–258 (2000)

    Article  Google Scholar 

  23. Gomez, E., Amutha, Rani D., Cheeseman, C.R., Deegan, D., Wise, M., Boccaccini, A.R.: Thermal plasma technology for the treatment of wastes: a critical review. J. Hazard. Mater. 161, 614–626 (2009)

    Article  Google Scholar 

  24. Bernardo, E., Scarinci, G., Edme, E., Michon, U., Planty, N.: Fast-sintered gehlenite glass-ceramics from plasma-vitrified municipal solid waste incinerator fly ashes. J. Am. Ceram. Soc. 92, 528–530 (2009)

    Article  Google Scholar 

  25. Park, Y.J., Heo, J.: Vitrification of fly ash from municipal solid waste incinerator. J. Hazard. Mat. B91, 83–93 (2002)

    Article  Google Scholar 

  26. Tessier-Doyen, N., Grenier, X., Huger, M., Smith, D.S., Fournier, D., Roger, J.P.: Thermal conductivity of alumina inclusion/glass matrix composite materials: local and macroscopic scales. J. Eur. Ceram. Soc. 27, 2635–2640 (2007)

    Article  Google Scholar 

  27. Chotard, T., Soro, J., Lemercier, H., Huger, M., Gault, C.: High temperature characterization of cordierite-mullite refractory by ultrasonic means. J. Eur. Ceram. Soc. 28, 2129–2135 (2008)

    Article  Google Scholar 

  28. Romero, M., Rawlings, R.D., Rincon, J.M.: Development of a new glass-ceramic by means of controlled vitrification and crystallization of inorganic wastes from urban incineration. J. Eur. Ceram. Soc. 19, 2049–2058 (1999)

    Article  Google Scholar 

  29. Kim, J.M., Kim, H.S.: Glass-ceramic produced from a municipal waste incinerator fly ash with high Cl content. J. Eur. Ceram. Soc. 24, 2373–2382 (2004)

    Article  Google Scholar 

  30. Dorlot J.M., Bailon J.P., Masounave J.: “Des Matériaux, » Ecole Polytechnique de Montréal Ed., Canada. (1986). ISBN 2-553-00176-2

  31. Heberlein, J., Murphy, A.B.: Thermal plasma waste review. J. Phys. D Appl. Phys. 41, 1–20 (2008)

    Article  Google Scholar 

  32. Sardeshpande, V., Gaitonde, U.N., Banerjee, R.: Model based energy benchmarking for glass furnace. Energy Conv. Manag. 48, 2718–2738 (2007)

    Article  Google Scholar 

  33. Zhang, H.L., Baeyens, J., Degreve, J., Caceres, G.: Concentrated solar power plants: review and design methodology. Renew. Sustain. Energy Rev. 22, 466–481 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The study has been funded by the French government through the ANR agency and specifically the StockE program (SESCO project). Special thanks to H. Glenat for the Young modulus measurements and S. Ory for DSC experiments. The authors acknowledge also the kind supply of the studied materials by the EUROPLASMA Company.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Py.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meffre, A., Py, X., Olives, R. et al. High-Temperature Sensible Heat-Based Thermal Energy Storage Materials Made of Vitrified MSWI Fly Ashes. Waste Biomass Valor 6, 1003–1014 (2015). https://doi.org/10.1007/s12649-015-9409-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9409-9

Keywords

Navigation