Skip to main content

Analysis of Meso/Thermo AD Process Applied to Pressed Biowaste

Abstract

Nowadays, anaerobic digestion is a proven technology for the biowaste management. Current research interest is orientated towards process optimization in terms of biogas yield focusing amongst other on mechanical pre-treatment applications to favour solubilisation of biowaste complex organic compounds. A recent mechanical pre-treatment technique involves pressing of segregated biowaste for the physical separation of the material to distinct and more easily handled phases namely semi-liquid and semi-solid biowaste fractions. The aim of the current study is to examine the characteristics of the semi-liquid fraction and to assess the anaerobic digestion process under mesophilic (37 °C) and thermophilic (55 °C) conditions in CSTR pilot scale reactors. The semi-liquid fraction exhibits high biodegradability potential having increased volatile to total solids ratio (0.88) while the low TS content (TS = 188 gTS/kg) facilitates the operating conditions of the process. The mesophilic and thermophilic digestion processes in steady state conditions showed high strength and resilience to the process parameters such as pH, alkalinity, VFA, ammonia and ammonium levels. Mesophilic and thermophilic anaerobic digestion gave an average biogas production of 0.79 and 0.90 m3biogas/kgTVS with 66.0 and 68.8 % methane content respectively.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Rapport, J., Zhang, R., Jenkins, B.M., Williams, R.B.: Current Anaerobic Digestion Technologies Used for Treatment of Municipal Organic Solid Waste. California Environmental Protection Agency. Publications Clearinghouse, California. http://www.calrecycle.ca.gov/Publications/Documents/1275/2008011.pdf (2008)

  2. De Baere, L., Mattheeuws, B.: Anaerobic Digestion of the Organic Fraction of Municipal Solid Waste in Europe. In: Thome-Kozmiensky, K.J., Thiel S. (eds.) Waste Management, vol. 3—Recycling and Recovery, pp. 517–526. Neuruppin, Germany (2012)

  3. Zhang, C., Su, H., Baeyens, J., Tan, T.: Reviewing the anaerobic digestion of food waste for biogas production. Renew. Sustain. Energy Rev. 38, 383–392 (2014)

    Article  Google Scholar 

  4. Bernstad, A., Malmquist, L., Truedsson, C., la Cour Jansen, J.: Need for improvements in physical pretreatment of source-separated household food waste. Waste Manag. 33, 746–754 (2013)

    Article  Google Scholar 

  5. Nayono, S.E., Gallert, C., Winter, J.: Co-digestion of press water and food waste in a biowaste digester for improvement of biogas production. Bioresour. Technol. 101, 6987–6993 (2010)

    Article  Google Scholar 

  6. Cecchi, F., Cavinato, C.: Anaerobic digestion of bio-waste: a mini-review focusing on territorial and environmental aspects. Waste Manage. Res. 33(5), 429–438 (2015)

    Article  Google Scholar 

  7. Zhang, R., El-Mashad, H.M., Hartman, K., Wang, F., Liu, G., Choate, C.: Characterization of food waste as feedstock for anaerobic digestion. Bioresour. Technol. 98(4), 929–935 (2007)

    Article  Google Scholar 

  8. Cesaro, A., Belgiorno, V.: Pretreatment methods to improve anaerobic biodegradability of organic municipal solid waste fractions. Chem. Eng. J. 240, 24–37 (2014)

    Article  Google Scholar 

  9. Heaven, S., Zhang, Y., Arnold, R., Paavola, T., Vaz, F., Cavinato, C.: Compositional Analysis of Food Waste from Study Sites in Geographically Distinct Regions of Europe. Valorisation of Food Waste to Biogas (VALORGAS). EC 7th Framework Programme. Finland. http://www.valorgas.soton.ac.uk/deliverables.htm (2010). Accessed 8 July 2015

  10. Malamis, D., Panaretou, V., Vidalis, A., Loizidou, M.: Implementation of the Scheme for MSW Separation at Source in the Municipality of Tinos (ISWM-TINOS). EC LIFE10ENV/GR/480 000610 project. Greece. http://iswm-tinos.uest.gr/?page_id=569 (2015). Accessed 8 July 2015

  11. Micolucci, F., Gottardo, M., Bolzonella, D., Pavan, P.: Automatic process control for stable bio-hythane production in two-phase thermophilic anaerobic digestion of food waste. Int. J. Hydrog. Energy 39(31), 17563–17572 (2014)

    Article  Google Scholar 

  12. MODECOM: A Method for Characterization of Domestic Waste. Agence de l'environnement et de la maitrise de l'énergie. ADEME. France (1998)

  13. Gallert, C., Winter, J.: Bacterial metabolism in wastewater treatment systems. In: Jördening, H.-J., Winter, J. (eds.) Environmental Biotechnology—Concepts and Applications. Wiley-VCH, Weinheim (2005)

    Google Scholar 

  14. Ripley, L.E., Boyle, J.C., Converse, J.C.: Improved alkalimetric monotoring for anaerobic digestion of high strength wastes. J. Water Pollut. Control Fed. 58(5), 406–411 (1986)

    Google Scholar 

  15. Chen, Y., Cheng, J.J., Creamer, K.S.: Inhibition of anaerobic digestion process: a review. Bioresour. Technol. 99(10), 4044–4064 (2008)

    Article  Google Scholar 

  16. Yenigün, O., Demirel, B.: Ammonia inhibition in anaerobic digestion: a review. Process Biochem. 48(5–6), 901–911 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

The hospitality of Treviso City Council is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Malamis.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Micolucci, F., Gottardo, M., Malamis, D. et al. Analysis of Meso/Thermo AD Process Applied to Pressed Biowaste. Waste Biomass Valor 6, 723–731 (2015). https://doi.org/10.1007/s12649-015-9407-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9407-y

Keywords

  • Anaerobic digestion
  • Biogas production
  • Biowaste pressing