Advertisement

Waste and Biomass Valorization

, Volume 6, Issue 6, pp 1103–1113 | Cite as

Strategies for Using Pulp and Paper Sludges as Culture Media for Xylanase Production with Bacillus pumilus

  • Thanh Tung Lai
  • Thi Thanh Ha Pham
  • Kokou Adjallé
  • François Brouillette
  • Simon BarnabéEmail author
Original Paper

Abstract

Fermentation of Bacillus pumilus (B. pumilus) using different pulp and paper sludges as culture media were performed in this work to produce at lower cost industrial enzymes such as xylanases. Secondary sludge was shown to be a suitable alternative culture medium for B. pumilus growth, while primary sludge may serve as xylanases inducer. Mixing primary (PS) and secondary sludges (SS) at 1PS:2SS (w/w) ratio having 15 g/L total solids concentration resulted in the highest cell concentration of 2 × 108 CFU/mL and the highest xylanase activity of 3.8 IU/mL under shake flask fermentation. Other lignocellulosic biomasses were tested as potential xylanase inducers. Addition of corn stover to SS showed the highest xylanase activity (10.7 IU/mL). When using a 7 L bioreactor, total cell concentration and xylanase activity obtained in the secondary sludge medium supplemented with commercial xylan (2.5 × 109 CFU/mL and 35.5 IU/mL, respectively) and corn stover (3.4 × 109 CFU/mL and 37.8 IU/mL, respectively) were comparative to a semi-synthetic based medium (5.8 × 109 CFU/mL and 47 IU/mL, respectively). The xylanase activity of B. pumilus produced in paper sludge is stable at pH 6–9 at 50 °C that offered a potential application of the enzyme for biobleaching in pulp and paper industry.

Keywords

Bacillus pumilus Xylanase Pulp and paper sludge Lignocellulosic biomass 

Notes

Acknowledgments

The authors are sincerely thankful to the Natural Sciences and Engineering Research Council of Canada (Grant No. 371821) for financial support. The views and opinions expressed in this article are those of authors. We would like to extend our thanks to Mr. Brice Ouedraogo for experimental assistance.

References

  1. 1.
    Farrell, R.L., Hata, K., Wall, M.B.: Solving pitch problems in pulp and paper processes by the use of enzymes or fungi. In: Eriksson, K.-E. L., et al. (eds.) Biotechnology in the Pulp and Paper Industry, pp. 197–212. Berlin: Springer (1997)Google Scholar
  2. 2.
    Gutiérrez, A., José, C., Martínez, A.T.: Microbial and enzymatic control of pitch in the pulp and paper industry. Appl. Microbiol. Biotechnol. 82, 1005–1018 (2009)CrossRefGoogle Scholar
  3. 3.
    Nghiem, N.P., Montanti, J., Johnston, D.B., Drapcho, C.: Fractionation of corn fiber treated by soaking in aqueous ammonia (SAA) for isolation of hemicellulose B and production of C5 sugars by enzyme hydrolysis. Appl. Biochem. Biotechnol. 164, 1390–1404 (2011)CrossRefGoogle Scholar
  4. 4.
    Petersen, M.Ø., Larsen, J., Thomsen, M.H.: Optimization of hydrothermal pretreatment of wheat straw for production of bioethanol at low water consumption without addition of chemicals. Biomass Bioenergy 33, 834–840 (2009)CrossRefGoogle Scholar
  5. 5.
    Beg, Q.K., Kapoor, M., Mahajan, L., Hoondal, G.S.: Microbial xylanases and their industrial applications: a review. Appl. Microbiol. Biotechnol. 56, 326–338 (2001)CrossRefGoogle Scholar
  6. 6.
    Collins, T., Gerday, C., Feller, G.: Xylanases, xylanase families and extremophilic xylanases. FEMS Microbiol. Rev. 29, 3–23 (2005)CrossRefGoogle Scholar
  7. 7.
    Paës, G., Berrin, J., Beaugrand, J.: GH11 xylanases: structure/function/properties relationships and applications. Biotechnol. Adv. 30, 564–592 (2012)CrossRefGoogle Scholar
  8. 8.
    Polizeli, M.L.T.M., Rizzatti, A.C.S., Monti, R., Terenzi, H.F., Jorge, J.A., Amorim, D.S.: Xylanases from fungi: properties and industrial applications. Appl. Microbiol. Biotechnol. 67, 577–591 (2005)CrossRefGoogle Scholar
  9. 9.
    Shallom, D., Shoham, Y.: Microbial hemicellulases. Curr. Opin. Microbiol. 6, 219–228 (2003)CrossRefGoogle Scholar
  10. 10.
    Battan, B., Sharma, J., Dhiman, S.S., Kuhad, R.C.: Enhanced production of cellulase-free thermostable xylanase by Bacillus pumilus ASH and its potential application in paper industry. Enzyme Microbiol. Technol. 41, 733–739 (2007)CrossRefGoogle Scholar
  11. 11.
    Duarte, M.C.T., da Cristina, S.E., de Bulhões Gomes, I.M., Ponezi, AlN, Portugal, E.P., Vicente, J.R., Davanzo, E.: Xylan-hydrolyzing enzyme system from Bacillus pumilus CBMAI 0008 and its effects on Eucalyptus grandis kraft pulp for pulp bleaching improvement. Bioresour. Technol. 88, 9–15 (2003)CrossRefGoogle Scholar
  12. 12.
    Pham, P.L., Taillandier, P., Delmas, M., Strehaiano, P.: Production of xylanases by Bacillus polymyxa using lignocellulosic wastes. Ind. Crops Prod. 7, 195–203 (1998)CrossRefGoogle Scholar
  13. 13.
    Subramaniyan, S., Prema, P.: Minireview. Cellulase-free xylanases from Bacillus and other microorganisms. FEMS Microbiol. Lett. 183, 1–7 (2000)CrossRefGoogle Scholar
  14. 14.
    Kapilan, R., Arasaratnam, V.: Paddy husk as support for solid state fermentation to produce xylanase from Bacillus pumilus. Rice Sci. 18, 36–45 (2011)CrossRefGoogle Scholar
  15. 15.
    Kapoor, M., Nair, L.M., Kuhad, R.C.: Cost-effective xylanase production from free and immobilized Bacillus pumilus strain MK001 and its application in saccharification of Prosopis juliflora. Biochem. Eng. J. 38, 88–97 (2008)CrossRefGoogle Scholar
  16. 16.
    Poorna, C.A., Prema, P.: Production and partial characterization of endoxylanase by Bacillus pumilus using agro industrial residues. Biochem. Eng. J. 32, 106–112 (2006)CrossRefGoogle Scholar
  17. 17.
    Vu, K.D., Tyagi, R.D., Valéro, J.R., Surampalli, R.Y.: Batch and fed-batch fermentation of Bacillus thuringiensis using starch industry wastewater as fermentation substrate. Bioprocess Biosyst. Eng. 33, 691–700 (2010)CrossRefGoogle Scholar
  18. 18.
    Yezza, A., Tyagi, R.D., Valéro, J.R., Surampalli, R.Y., Smith, J.: Scale-up of biopesticide production processes using wastewater sludge as a raw material. J. Ind. Microbiol. Biotechnol. 31, 545–552 (2004)CrossRefGoogle Scholar
  19. 19.
    Nagar, S., Gupta, V.K., Kumar, D., Kumar, L., Kuhad, R.C.: Production and optimization of cellulase-free, alkali-stable xylanase by Bacillus pumilus SV-85S in submerged fermentation. J. Ind. Microbiol. Biotechnol. 37, 71–83 (2009)CrossRefGoogle Scholar
  20. 20.
    Gavrilescu, D.: Energy from biomass in pulp and paper mills. Environ. Eng. Manag. J. 7, 537–546 (2008)Google Scholar
  21. 21.
    Lynd, L.R., Lyford, K., South, C.R., van Walsum, G., Levenson, K.: Evaluation of paper sludges for amenability to enzymatic hydrolysis and conversion to ethanol. TAPPI J. 84, 50 (2001)Google Scholar
  22. 22.
    Reddy, C.A., Breznak, J.A., Marzluf, G.A., Schmidt, T.M., Snyder, L.R.: Methods for General and Molecular Microbiology. ASM Press, Washington, DC (2007)Google Scholar
  23. 23.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of Structural Carbohydrates and Lignin in Biomass. [National Renewable Energy Laboratory Technical Report NREL/TP-510-42618] (2008)Google Scholar
  24. 24.
    APHA, AWWA, WPCF: Standard methods for examination of water and wastewaters. In: 20th Edition American Public Health Association, Washington, US. Section 2540B, pp. 216–218 (1999)Google Scholar
  25. 25.
    Ghose, T.K., Bisaria, V.S., IUPAC (International Union of Pure and Applied Chemistry): Measurement of hemicellulase activities. Part 1: xylanases. Pure Appl. Chem. 59, 1739–1752 (1987)Google Scholar
  26. 26.
    Schneider, G., Strehaiano, P., Taillandier, P.: Improvement of a fed-batch process for high level xylanase production by a Bacillus strain. J. Chem. Technol. Biotechnol. 76, 456–460 (2001)CrossRefGoogle Scholar
  27. 27.
    Marques, S., Alves, L., Roseiro, J.C.: Gírio conversion of recycle paper sludge to ethanol by SHF and SSF using Pichia stipitis. Biomass Bioenergy 32, 400–406 (2008)CrossRefGoogle Scholar
  28. 28.
    Verma, M., Brar, S.K., Tyagia, R.D., Valéroa, J.R., Surampalli, R.Y.: Wastewater sludge as a potential raw material for antagonistic fungus (Trichoderma sp.): role of pre-treatment and solids concentration. Water Res. 39, 3587–3596 (2005)CrossRefGoogle Scholar
  29. 29.
    Michelin, M., de Oliveira Mota, A.M., de Lourdes Polizeli, M., de Teixeira, M., da Pereira, S.D., Vicente, A.A., Teixeira, J.A.: Influence of volumetric oxygen transfer coefficient (k La) on xylanases batch production by Aspergillus niger van Tieghem in stirred tank and internal-loop airlift bioreactors. Biochem. Eng. J. 80, 19–26 (2013)CrossRefGoogle Scholar
  30. 30.
    Degrassi, G., Vindigni, A., Venturi, V.: A thermostable α-arabinofuranosidase from xylanolytic Bacillus pumilus: purification and characterisation. J. Biotechnol. 101, 69–79 (2003)CrossRefGoogle Scholar
  31. 31.
    Wang, C.-Y., Chan, H., Lin, H.-T., Shyu, Y.-T.: Production, purification and characterisation of a novel halostable xylanase from Bacillus sp. NTU-06. Ann. Appl. Biol. 156, 187–197 (2009)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Thanh Tung Lai
    • 1
  • Thi Thanh Ha Pham
    • 1
  • Kokou Adjallé
    • 1
  • François Brouillette
    • 1
  • Simon Barnabé
    • 1
    Email author
  1. 1.Université du Québec à Trois-RivièresTrois-RivièresCanada

Personalised recommendations