Skip to main content

Advertisement

Log in

Kinetic Analysis of Biomass and Comparison of its Chemical Compositions by Thermogravimetry, Wet and Experimental Furnace Methods

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Lignin, cellulose and hemicellulose are the major components of biomass. The chemical reactivities of the biomass are affected by the difference in chemical structures making the knowledge of their composition, essential to predict the efficiency of the biomass conversion process for utilizing bio-energy, which is of immense importance for successful commercialization of these processes and thus to gain energy security. Despite the presence of accurate and robust Wet Chemical methods, it is very difficult to implement these techniques commercially. Therefore, in this study the chemical composition of biomass has been determined by a simpler physical technique—Thermogravimetric Analysis (TG). The values obtained were correlated with chemical methods and it was found that TG predicted the holocellulose content with a relatively high accuracy while it underestimated the lignin content by a huge margin. The kinetic parameters of degradation of five biomass samples have also been reported in this study. This study also compared the mass loss profiles of the biomass in TG with their mass loss profiles in a furnace.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

A :

Pre-exponential factor

B, C, D :

Constants

dw/dt :

Ratio of change in weight to change in time

E :

Activation energy

k :

Reaction constant

n :

Order of the reaction

R :

Universal gas constant

R2 :

Correlation coefficient

t :

Time

w :

Weight at any time

w f :

Final weight at the end of the stage

w o :

Initial weight at the start of the stage

x :

Sample weight

ASTM:

American Society for Testing and Materials

DTG:

Derivative thermogravimetry

H-NMR:

Hydrogen 1-nuclear magnetic resonance

HR-TGA:

High-resolution thermogravimetric analysis

MMT:

Million metric tonne

PUT:

Pyrolytic unit thermographs

TAPPI:

Technical Association of the Pulp and Paper Industry

TG:

Thermogravimetry

References

  1. Klass, D.L.: Biomass for renewable energy, fuels, and chemicals, pp. 1–652. Academic Press, San Diego (1998)

    Book  Google Scholar 

  2. Carrier, M., Loppinet-Serani, A., Denux, D., Lasnier, J.-M., Ham-Pichavant, F., Cansell, F., Aymonier, C.: Thermogravimetric analysis as a new method to determine the lignocellulosic composition of biomass. Biomass Bioenergy 35(1), 298–307 (2011)

    Article  Google Scholar 

  3. Demirbas, A.: Heavy metal adsorption onto agro-based waste materials: a review. J. Hazard. Mater. 157(2–3), 220–229 (2008)

    Article  Google Scholar 

  4. Nelson, P., Hood, E., Powell, R.: The bioeconomy: a new era of products derived from renewable plant-based feedstocks. In: Hood, E., Nelson, P., Powell, R. (eds.) Plant Biomass Conversion, pp. 3–20. West Sussex, Wiley Blackwell (2011)

    Google Scholar 

  5. Yang, H., Yan, R., Chen, H., Lee, D.H., Zheng, C.: Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86, 1781–1788 (2007)

    Article  Google Scholar 

  6. Demirbas, A.: Fuels from biomass. In: Demirbas, A. (ed.) Biohydrogen for Future Engine fuel Demands, pp. 43–59. Springer, London (2009)

    Google Scholar 

  7. Bledzki, A.K., Mamun, A.A., Volk, J.: Physical, chemical and surface properties of wheat husk, rye husk and soft wood and their polypropylene composites. Compos. Part A Appl. Sci. Manuf. 41(4), 480–488 (2010)

    Article  Google Scholar 

  8. Brinkmann, K., Blaschke, L., Polle, A.: Comparison of different methods for lignin determination as a basis for calibration of near-infrared reflectance spectroscopy and implications of lignoproteins. J. Chem. Technol. 28(12), 2483–2501 (2002)

    Google Scholar 

  9. Saura-Calixto, F., Canellas, J., Garcia-Raso, J.: Determination of hemicellulose, cellulose and lignin contents of dietary fibre and crude fibre of several seed hulls. data comparison. Z Leb. Unters Forsch 177, 200–202 (1983)

    Article  Google Scholar 

  10. Ververis, C., Georghiou, K., Danielidis, D., Hatzinikolaou, D.G., Santas, P., Santas, R., Corleti, V.: Cellulose, hemicelluloses, lignin and ash content of some organic materials and their suitability for use as paper pulp supplements. Bioresour. Technol. 98(2), 296–301 (2007)

    Article  Google Scholar 

  11. Singh, K, Das, K.C., Risse, M., Worley, J.: “Determination of composition of cellulose and lignin mixtures using thermo gravimetric analysis (TGA).In: 15th North American Waste to Energy Conference, pp. 219–226. (2007)

  12. Cozzani, V., Lucchesi, A., Stoppato, G., Maschio, G.: A new method to determine the composition of biomass by thermogravimetric analysis. Can. J. Chem. Eng. 75(1), 127–133 (1997)

    Article  Google Scholar 

  13. Freda, C., Zimbardi, F., Nanna, F., Viola, E.: Mathematical tool from corn stover TGA to determine its composition. Appl. Biochem. Biotechnol. 167(8), 2283–2294 (2012)

    Article  Google Scholar 

  14. Serapiglia, M.J., Cameron, K.D., Stipanovic, A.J., Smart, L.B.: High-resolution thermogravimetric analysis for rapid characterization of biomass composition and selection of shrub willow varieties. Appl. Biochem. Biotechnol. 145(1–3), 3–11 (2008)

    Article  Google Scholar 

  15. Serapiglia, M.J., Cameron, K.D., Stipanovic, A.J., Smart, L.B.: Analysis of biomass composition using high-resolution thermogravimetric analysis and percent bark content for the selection of shrub willow bioenergy crop varieties. BioEnergy Res. 2(1–2), 1–9 (2009)

    Article  Google Scholar 

  16. Aghamohammadi, N., Sulaiman, N.M.N., Aroua, M.K.: Combustion characteristics of biomass in SouthEast Asia. Biomass Bioenergy 35(9), 3884–3890 (2011)

    Article  Google Scholar 

  17. Kumar, A., Wang, L., Dzenis, Y.A., Jones, D.D., Hanna, M.A.: Thermogravimetric characterization of corn stover as gasification and pyrolysis feedstock. Biomass Bioenergy 32(5), 460–467 (2008)

    Article  Google Scholar 

  18. Williams, P.T.: The pyrolysis of rice husks in a thermogravimetric analyser and static batch reactor. Fuel 72, 151–159 (1993)

    Article  Google Scholar 

  19. Sheeba, K.N., Babu, J.S.C., Jaisankar, S.: The reaction kinetics for coir pith pyrolysis in thermogravimetric analyzer. Energy Sources Part A: Recovery, Util. Environ. Eff. 32(19), 1837–1850 (2010)

    Article  Google Scholar 

  20. Barneto, A.G., Carmona, J.A., Galvez, A., Conesa, J.A.: Effects of the composting and the heating rate on biomass gasification. Energy Fuels 23(2), 951–957 (2008)

    Article  Google Scholar 

  21. Weerachanchai, P., Tangsathitkulchai, C., Tangsathitkulchai, M.: Characterization of products from slow pyrolysis of palm kernel cake and cassava pulp residue. Korean J. Chem. Eng. 28(12), 2262–2274 (2011)

    Article  Google Scholar 

  22. Abdullah, S.S., Yusup, S., Ahmad, M.M., Ramli, A., Ismail, L.: Thermogravimetry study on pyrolysis of various lignocellulosic biomass for potential hydrogen production. Int. J. Chem. Biol. Eng. 3(3), 137–141 (2010)

  23. Weerachanchai, P., Tangsathitkulchai, C.: Comparison of pyrolysis kinetic models for thermogravimetric analysis of biomass. J. Sci. Technol. 17(4), 387–400 (2010)

    Google Scholar 

  24. Raveendran, K., Ganesh, A., Khilar, K.C.: Pyrolysis characteristics of biomass and biomass components. Fuel 75(8), 987–998 (1996)

    Article  Google Scholar 

  25. Aradhey, A.: India sugar annual (2012)

  26. Thomas, G.V., Palaniswami, C., Prabhu, S.R., Gopal, M., Gupta, A.: Co-composting of coconut coir pith with solid poultry manure. Curr. Sci. 104(2), 245–250 (2013)

    Google Scholar 

  27. Gidde, M.R., Jivani, A.P.: Waste to wealth—Potential of rice husk in India a literature review. In International Conference on Cleaner Technologies and Environment Management, pp. 586–590, (2007)

  28. Biofuels: http://www.chhattisgarhbiofuels.com/introduction.html

  29. Lin, L., Yan, R., Liu, Y., Jiang, W.: In-depth investigation of enzymatic hydrolysis of biomass wastes based on three major components : cellulose, hemicellulose and lignin. Bioresour. Technol. 101(21), 8217–8223 (2010)

    Article  Google Scholar 

  30. Chen, Y.M., Wan, J.Q., Ma, Y.W.: Effect of noncellulosic constituents on physical properties and pore structure of recycled fiber. Appita 62(4), 290–302 (2009)

    Google Scholar 

  31. Naik, S., Goud, V.V., Rout, P.K., Jacobson, K., Dalai, A.K.: Characterization of Canadian biomass for alternative renewable biofuel. Renew. Energy 35(8), 1624–1631 (2010)

    Article  Google Scholar 

  32. Song, C., Hu, H., Zhu, S., Wang, G., Chen, G.: Nonisothermal catalytic liquefaction of corn stalk in subcritical and supercritical water. Energy Fuels 18(1), 90–96 (2004)

    Article  Google Scholar 

  33. Di Blasi, C., Signorelli, G., Di Russo, C., Rea, G.: Product distribution from pyrolysis of wood and agricultural residues. Ind. Eng. Chem. Res. 38(6), 2216–2224 (1999)

    Article  Google Scholar 

  34. Mansaray, K.G., Ghaly, A.E.: Determination of reaction kinetics of rice husks in air using thermogravimetric analysis. Energy Sources 21(10), 899–911 (1999)

    Article  Google Scholar 

  35. Alvarez-Idaboy, J.R., Mora-diez, N., Vivier-bunge, A.: A quantum chemical and classical transition state theory explanation of negative activation energies in OH addition to substituted ethenes. J. Am. Chem. Soc. 122, 3715–3720 (2000)

    Article  Google Scholar 

  36. Çulcuoğlu, E., Ünay, E., Karaosm, F.: Thermogravimetric Analysis of the rapeseed cake. Energy Sources 23(10), 889–895 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

We express our gratitude to ‘Department of Science and Technology, New-Delhi, India’ for financially supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheeba Narayanan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goenka, R., Parthasarathy, P., Gupta, N.K. et al. Kinetic Analysis of Biomass and Comparison of its Chemical Compositions by Thermogravimetry, Wet and Experimental Furnace Methods. Waste Biomass Valor 6, 989–1002 (2015). https://doi.org/10.1007/s12649-015-9402-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9402-3

Keywords

Navigation