Skip to main content

Advertisement

Log in

An Artificial Neural Network and Genetic Algorithm Optimized Model for Biogas Production from Co-digestion of Seed Cake of Karanja and Cattle Dung

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

In this study, experiments were conducted with four different proportions of seed cake of Karanja (SCK) and cattle dung (CD) mixture, for biogas production. 75, 50 and 25 % of the SCK on a mass basis were mixed with 25, 50 and 75 % of the CD and, named as S1, S2 and S3. For comparison, biogas obtained from 100 % CD (S4) was considered. The samples were kept in four different reactors, for 30 days of observation, and the yield of biogas from the samples S1, S2 and S3 was evaluated. Modeling was carried out for prediction and optimization of biogas production using ANN (artificial neural network) and the GA (genetic algorithm). A multi-layered feed-forward network with hidden neurons and linear output neurons was used for training the network using the input parameters pH, digestion time and C/N ratio for the yield of biogas. The performance of the neural network model was verified, and the correlation coefficients were found to be close to 1, for the samples. The experimental results on the biogas production were validated with the results of the neural network and optimized with the GA. The GA optimized values for pH, digestion time, and the C/N ratio of sample S3 were found to be 6.68, 14.22 days and 24.1:1, respectively. These optimized data can be used to monitor a large scale anaerobic plant. Among all samples, S3 gave a better result with respect to the pH, C/N (carbon/nitrogen) ratio, digestion time and biogas yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

AI:

Artificial intelligence

ANN:

Artificial neural network

C/N:

Carbon/nitrogen ratio

CD:

Cattle dung

CH4 :

Methane

CI:

Compression ignition

CO2 :

Carbon dioxide

FC:

Fixed carbon

FL:

Fuzzy logic

FTIR:

Fourier transform infrared spectroscopy

GA:

Genetic algorithm

GHG:

Greenhouse gases

H2 :

Hydrogen

H2S:

Hydrogen sulfide

HCCI:

Homogeneous charge compression ignition

MSE:

Mean square error

N2O:

Dinitrogen monoxide

NH3 :

Ammonia

NOx :

Oxides of nitrogen

OLR:

Organic loading rate

PSO:

Particle swarm optimization

R:

Correlation coefficient

RNA:

Ribonucleic acid

RS:

Rice straw

SCK:

Seed cake of Karanja

SI:

Spark ignition

TS:

Total solid

VFAs:

Volatile fatty acids

VOCs:

Volatile organic compounds

VS:

Volatile solid

References

  1. Putun, A.E., Uzun, B.B., Apaydin, E., Putun, E.: Bio-oil from olive oil industry wastes: pyrolysis of olive residue under different conditions. Fuel Process. Technol. 87, 25–32 (2005)

    Article  Google Scholar 

  2. Vijay, V.K., Prasad, R., Singh, J.P., Sorayan, V.P.S.: A case for biogas energy application for rural industries in India. Renew. Energy 9, 993–996 (1996)

    Article  Google Scholar 

  3. Phadatare, A.G., Raheman, H.: Diesel engine emissions and performance from blends of karanja methyl ester and diesel. Biomass Bioenergy 27(4), 393–397 (2004)

    Article  Google Scholar 

  4. Yetilmezsoy, K., Sakar, S.: Improvement of COD and color removal from UASB treated poultry manure wastewater using Fenton’s oxidation. J. Hazard. Mater. 151, 547–558 (2008)

    Article  Google Scholar 

  5. Isci, A., Demirer, G.N.: Biogas production potential from cotton wastes. Renew. Energy 32, 750–757 (2007)

    Article  Google Scholar 

  6. Singh, R., Mandal, S.K.: The utilization of non-edible oil cake along with cow dung for methane-enriched biogas production using mixed inoculum. Energy Sources Part A 33, 449–458 (2011)

    Article  Google Scholar 

  7. Yetilmezsoy, K.: A new empirical model for the determination of the required retention time in hindered settling. Fresenius Environ. Bull. 16, 674–684 (2007)

    Google Scholar 

  8. Cakmakci, M.: Adaptive neuro-fuzzy modelling of anaerobic digestion of primary sedimentation sludge. Bioprocess Biosyst. Eng. 30, 349–357 (2007)

    Article  Google Scholar 

  9. Aydinol, F.I.T., Yetilmezsoy, K.: A fuzzy-logic-based model to predict biogas and methane production rates in a pilot-scale mesophilic UASB reactor treating molasses wastewater. J. Hazard. Mater. 182, 460–471 (2010)

    Article  Google Scholar 

  10. Kanat, G., Saral, A.: Estimation of biogas production rate in thermophilic UASB reactor using artificial neural networks. Environ. Model. Assess. 14, 607–614 (2009)

    Article  Google Scholar 

  11. Qdais, H.A., Hani, K.B., Shatnawia, N.: Modeling and optimization of biogas production from a waste digester using artificial neural network and genetic algorithm. Resour. Conserv. Recycl. 54, 359–363 (2010)

    Article  Google Scholar 

  12. Kana, E.B.G., Oloke, J.K., Lateef, A., Adesiyan, M.O.: Modeling and optimization of biogas production on saw dust and other co-substrates using artificial neural network and genetic algorithm. Renew. Energy 46, 276–281 (2012)

    Article  Google Scholar 

  13. Ozkaya, B., Demir, A., Bilgili, M.S.: Neural network prediction model for the methane fraction in biogas from field-scale landfill bioreactors. Environ. Model Softw. 22, 815–822 (2007)

    Article  Google Scholar 

  14. Yetilmezsoy, K., Demirel, S.: Artificial neural network (ANN) approach for modeling of Pb(II) adsorption from aqueous solution by Antep pistachio (Pistacia vera L.). J. Hazard. Mater. 153, 1288–1300 (2008)

    Article  Google Scholar 

  15. Chan, C.W., Huang, G.H.: Artificial intelligence for management and control of pollution minimization and mitigation processes. Eng. Appl. Artif. Intell. 16, 75–90 (2003)

    Article  Google Scholar 

  16. Biyikoglu, A., Akcayol, M.A., Ozdemir, V., Sivrioglu, M.: Temperature prediction in a coal fired boiler with a fixed bed by fuzzy logic based on numerical solution. Energy Convers. Manag. 46, 151–166 (2005)

    Article  Google Scholar 

  17. Altunkaynak, A., Ozger, M., Cakmakci, M.: Fuzzy logic modeling of the dissolved oxygen fluctuations in Golden Horn. Ecol. Model. 189, 436–446 (2005)

    Article  Google Scholar 

  18. Tay, J.H., Zhang, X.: A fast predicting neural fuzzy model for high-rate anaerobic wastewater treatment systems. Water Res. 34, 2849–2860 (2000)

    Article  Google Scholar 

  19. Wichern, M., Gehring, T., Fischer, K., Andrade, D., Lübken, M., Koch, K., et al.: Monofermentation of grass silage under mesophilic conditions: measurements and mathematical modeling with ADM1. Bioresour. Technol. 100, 1675–1681 (2009)

    Article  Google Scholar 

  20. Vijay, K.G., Rintu, B.: Evolutionary and swarm intelligence-based approaches for optimization of lipase extraction from fermented broth. Eng. Life Sci. 10, 265–273 (2010)

    Article  Google Scholar 

  21. Chandra, R., Vijay, V.K., Subbarao, P.M.V., Khura, T.K.: Production of methane from anaerobic digestion of jatropha and pongamia oil cakes. Appl. Energy 93, 148–159 (2012)

    Article  Google Scholar 

  22. Yadvika, S., Sreekrishnan, T.R., Kohli, S., Rana, V.: Enhancement of biogas production from solid substrates using different techniques—a review. Bioresour. Technol. 95, 1–10 (2004)

    Article  Google Scholar 

  23. Weiland, P.: Biogas production: current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849–860 (2010)

    Article  Google Scholar 

  24. Bagi, Z., Acs, N., Balint, B., Hovrath, L., Dobo, K., Perei, K.R., Rakhely, G., Kovacs, K.L.: Biotechnological intensification of biogas production. Appl. Microbiol. Biotechnol. 76, 473–482 (2007)

    Article  Google Scholar 

  25. Ferrer, I., Ponsa, S., Vázquez, F., Font, X.: Increasing biogas production by thermal (70 & #xB0;C) sludge pre-treatment prior to thermophilic anaerobic digestion. Biochem. Eng. J. 42, 186–192 (2008)

    Article  Google Scholar 

  26. Barik, D., Murugan, S.: Investigation on combustion performance and emission characteristics of a DI (direct injection) diesel engine fueled with biogas-diesel in dual fuel mode. Energy 72, 760–771 (2014)

    Article  Google Scholar 

  27. Costa, M.A., Braga, A.P., Menezes, B.R.: Improving generalization of MLPs with sliding mode control and the Levenberg–Marquardt algorithm. Neurocomputing 70, 1342–1347 (2007)

    Article  Google Scholar 

  28. Gen, M.C.: Genetic algorithms and engineering design. Wiley, New York (1997)

    Google Scholar 

  29. Okeh, C.O., Chukwudi, O.O., Frederick, J.C.O.: Biogas production from rice husks generated from various rice mills in Ebonyi State, Nigeria. Renew. Energy 62, 204–208 (2014)

    Article  Google Scholar 

  30. Demirel, B., Scherer, P.: Bio-methanization of energy crops through mono-digestion for continuous production of renewable biogas. Renew. Energy 34, 2940–2945 (2009)

    Article  Google Scholar 

  31. Havukainen, J., Uusitalo, V., Niskanen, A., Kapustina, V., Horttanainen, M.: Evaluation of methods for estimating energy performance of biogas production. Renew. Energy 66, 232–240 (2014)

    Article  Google Scholar 

  32. Martin, A., Borja, R., Garcia, I., Fiestas, J.A.: Kinetics methane production from olive mill waste water. Process Biochem. 26, 101–107 (1991)

    Article  Google Scholar 

  33. Raheman, H., Mondal, S.: Biogas production potential of jatropha seed cake. Biomass Bioenergy 37, 25–30 (2012)

    Article  Google Scholar 

  34. Athanasoulia, E., Melidis, P., Aivasidis, A.: Optimization of biogas production from waste activated sludge through serial digestion. Renew. Energy 47, 147–151 (2012)

    Article  Google Scholar 

  35. Demirbas, A.: Biogas production from the organic fraction of municipal solid waste. Energy Sources Part A 28, 1127–1134 (2006)

    Article  Google Scholar 

  36. Mustafi, N.N., Raine, R.R., Verhelst, S.: Combustion and emissions characteristics of a dual fuel engine operated on alternative gaseous fuels. Fuel 109, 669–678 (2013)

    Article  Google Scholar 

  37. Swami Nathan, S., Mallikarjuna, J.M., Ramesh, A.: An experimental study of the biogas-diesel HCCI mode of engine operation. Energy Convers. Manag. 51, 1347–1353 (2010)

    Article  Google Scholar 

  38. Yoon, S.H., Lee, C.S.: Experimental investigation on the combustion and exhaust emission characteristics of biogas - biodiesel dual-fuel combustion in a CI engine. Fuel Process. Technol. 92, 992–1000 (2011)

    Article  Google Scholar 

  39. Barik, D., Murugan, S.: Simultaneous reduction of NOx and smoke in a dual fuel DI diesel engine. Energy Convers. Manag. 84, 217–226 (2014)

    Article  Google Scholar 

  40. Barik, D., Murugan, S.: Experimental investigation on the behavior of a DI diesel engine fueled with raw biogas-diesel dual fuel at different injection timing. J. Energy Inst. (2015). doi:10.1016/j.joei.2015.03.002

    Google Scholar 

  41. Uusitalo, V., Soukka, R., Horttanainen, M., Niskanen, A., Havukainen, J.: Economics and greenhouse gas balance of biogas use systems in the Finnish transportation sector. Renew. Energy 51, 132–140 (2013)

    Article  Google Scholar 

  42. Gupta, A., Kumar, A., Sharma, S., Vijay, V.K.: Comparative evaluation of raw and detoxified mahua seed cake for biogas production. Appl. Energy 102, 1514–1521 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debabrata Barik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Barik, D., Murugan, S. An Artificial Neural Network and Genetic Algorithm Optimized Model for Biogas Production from Co-digestion of Seed Cake of Karanja and Cattle Dung. Waste Biomass Valor 6, 1015–1027 (2015). https://doi.org/10.1007/s12649-015-9392-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9392-1

Keywords

Navigation