Skip to main content

Advertisement

Log in

The Environmental Impacts and Allocation Methods Used in LCA Studies of Vegetable Oil-Based Bio-diesels

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Life cycle assessment (LCA) is a tool to assess the environmental impacts and resources used during the life cycle of a product, i.e., from raw material acquisition, via production and use phases, to waste management. The methods of development in LCA have been strong, and the paper is aimed at providing a review of recent developments of LCA methods employed in the production of bio-diesel from various vegetable sources like Jatropha, palm, soybean, sunflower, canola and rapeseed. The essential features of LCA methods like the goal, scope definition and system boundaries have been reviewed and authors have mainly focussed on impact categories on environment and energy. The review also covers impact categories like human health, ecosystem quality and resource depletion. The interpretation of results indicates that the implication of LCA is strong in energy analysis of greenhouse gases (GHGs) and there is less GHG emission in second generation bio-diesel as compared to first generation. Some uncertainties and gaps in the application of LCA are identified and discussed. The uncertainties are mainly due to inconsistent choices across different allocation, system boundaries, time period in impact assessment and scope of the analysis. The uncertainties are dealt by tools like Monte Carlo simulations, fuzzy set theory etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Nilsson, M., Eckerberg, K. (eds.): Environmental Policy Integration in Practise. Shaping Institutions for Learning. Earthscan. Routledge, London (2007)

  2. Finnveden, G., Moberg, A.: Environmental systems analysis tools—an overview. J. Clean. Prod. 13(12), 1165–1173 (2005)

    Article  Google Scholar 

  3. Ness, B., Urbel-Piirsalu, E., Anderberg, S., Olsson, L.: Categorising tools for sustainability assessment. Ecol. Econ. 60(3), 498–508 (2007)

    Article  Google Scholar 

  4. ISO: ISO 14040 International Standard. In: Environmental Management—Life Cycle Assessment—Principles and Framework. International Organisation for Standardization, Geneva, Switzerland (2006a)

  5. Ahmad, A.L., Yasin Mat, N.H., Derek, C.J.C., Lim, K.J.: Microalgae as a sustainable energy source for bio-diesel production: a review. Renew. Sustain. Energy Rev. 15(1), 584–593 (2011)

    Article  Google Scholar 

  6. Kansedo, J., Lee, K.T., Bhatia, S.: Bio-diesel production from palm oil via heterogeneous transesterification. Biomass Bioenergy 33(2), 271–276 (2009)

    Article  Google Scholar 

  7. Celikten, I., Koca, A., Arslan, M.A.: Comparison of performance and emissions of diesel fuel, rapeseed and soybean oil methyl esters injected at different pressures. Renew. Energy 35(4), 814–820 (2010)

    Article  Google Scholar 

  8. Lang, X., Dalai, A.K., Bakhshi, N.N., Reaney, M.J., Hertz, P.B.: Preparation and characterization of bio-diesels from various bio-oils. Bioresour. Technol. 80(1), 53–62 (2001)

    Article  Google Scholar 

  9. Siler-Marinkovic, S., Tomasevic, A.: Transesterification of sunflower oil in situ. Fuel 77(12), 1389–1392 (1998)

    Article  Google Scholar 

  10. Chatterjee, R., Sharma, V., Mukherjee, S., Kumar, S.: Quantitative assessment of biodiesel production: a model-based scenarios of sustainable development. J. Renew. Sustain. Energy 6, 013129 (2014). doi:10.1063/1.4863988

    Article  Google Scholar 

  11. Ghadge, S.V., Raheman, H.: Process optimization for bio-diesel production from mahua (Madhuca indica) oil using response surface methodology. Bioresour. Technol. 97(3), 379–384 (2006)

    Article  Google Scholar 

  12. Patil, V., Tran, K.-Q., Giselrod, H.R.: Towards sustainable production of biofuels from microalgae. Int. J. Mol. Sci. 9(7), 1188–1195 (2008)

    Article  Google Scholar 

  13. Yee, K.F., Tan, K.T., Abdullah, A.Z., Lee, K.T.: Life cycle assessment of palm bio-diesel: revealing facts and benefits for sustainability. Appl. Energy 86(Supplement 1), S189–S196 (2009)

    Article  Google Scholar 

  14. Requena, J.F.S., Guimaraes, A.C., Alpera, S.Q., Gangas, E.R., Hernandez-Navarro, S., Gracia, L.M.N., Martin-Gil, J., Cuesta, H.F.: Life cycle assessment (LCA) of the biofuel production process from sunflower oil, rapeseed oil and soybean oil. Fuel Process. Technol. 92(2), 190–199 (2011)

    Article  Google Scholar 

  15. Aderibigbe, A.O., Johnson, C.O.L.E., Makkar, H.P.S., Becker, K., Foidl, N.: Chemical composition and effect of heat on organic matter- and nitrogen degradability and some anti-nutritional components of Jatropha meal. Anim. Feed Sci. Technol. 67(2–3), 223–243 (1997)

    Article  Google Scholar 

  16. Forson, F.K., Oduro, E.K., Hammond-Donkoh, E.: Performance of Jatropha oil blends in a diesel engine. Renew. Energy 29(7), 1135–1145 (2004)

    Article  Google Scholar 

  17. Chitra, P., Venkatachalam, P., Sampathrajan, A.: Optmisation of experimental conditions for bio-diesel production from alkali catalysed transesterification of Jatropha curcas oil. Energy Sustain. Dev. 9(3), 13–18 (2005)

    Article  Google Scholar 

  18. Kaltschmitt, M., Reinhardt, G.A., Stelzer, T.: Life cycle analysis of biofuels under different environmental aspects. Biomass Bioenergy 12(2), 121–134 (1997)

    Article  Google Scholar 

  19. Peterson, C.L., Hustruli, T.: Carbon cycle for rapeseed oil bio-diesel fuels. Biomass Bioenergy 14(2), 91–109 (1997)

    Article  Google Scholar 

  20. DeNocker, L., Spirinckx, C.: Analysis of “Comparative LCA of bio-diesel and fossil diesel fuel”. In: International Conference and Exhibition on Life Cycle Assessment, pp. 1–6 (2000)

  21. Elsayed, M.A., Matthews, R., Mortimer, N.D.: Carbon and energy balances for a range of biofuel options. In: Unit, R.R. (ed.), Sheffield Hallam University, Sheffield, p. 71 (2003)

  22. Delucchi, M.A.: A lifecycle emissions model (LEM): lifecycle emissions from transportation fuels, motor vehicles, transportation modes, electricity use, heating and cooking fuels, and materials, Main Report, Institute of Transportation Studies, UC Davis, USA (2003)

  23. Mortimer, N.D., Cormack, P., Elsayed, M.A., Home, R.E.: Evaluation of the comparative energy, global warming, and socio-economic costs and benefits of bio-diesel. Resources Research Unit, School of Environment and Development, Sheffield Hallam University, UK (2003)

  24. Gartner, S.O., Reinhardt, G.A., Braschkat, J.: Life Cycle Assessment of Bio-Diesel: Update and New Aspects. Institute for Energy and Environmental Research, Heidelberg (2003)

    Google Scholar 

  25. Janulis, P.: Reduction of energy consumption in bio-diesel fuel life cycle. Renew. Energy 29(6), 861–871 (2004)

    Article  Google Scholar 

  26. Quirin, M., Gartner S.O., Pehnt, M., Reinhardt, G.A.: CO2 mitigation through biofuels in the transport sector: status and perspectives. In: I. f. E. a. E. R. (IFEU) (ed.), Main Report, Heidelberg, Germany, p. 57 (2004)

  27. Pimentel, D., Patzek, T.W.: Ethanol production using corn, switch grass, and wood; bio-diesel production using soybean and sunflower. Nat. Resour. Res. 14, 65–76 (2005)

    Article  Google Scholar 

  28. Varela, M., Lago, C., Jungmeier, G., Koenighofer, K.: Environmental and economics performance of biofuels. In: Main Report in Senter November (ed.), Viels Project, Utrecht, Netherlands, vol. 1 (2005)

  29. Singhabhandhu, A., Kurosawa, M., Tezuka, T.: Life cycle analysis of bio-diesel fuel production: case study of using used cooking oil as a raw material in Kyoto, Japan. In: The 2nd Joint International Conference on “Sustainable Energy and Environment (SEE 2006). 21–23 November 2006, Bangkok (2006)

  30. CONCAWE: Well-to-wheels analysis of future automotive fuels and power trains in the European context, Summary Report, Joint Research Centre of the EU Commission, and European Council for Automotive R and D (2006)

  31. von Blottnitz, H., Curran, M.A.: A review of assessments conducted on bioethanol as a transportation fuel from a net energy, greenhouse gas, and environmental life cycle perspective. J. Clean. Prod. 15(7), 607–619 (2007)

    Article  Google Scholar 

  32. Zah, R., Böni H., Gauch, M., Hischier, R., Lehmann, M., Wäger, P.: Life cycle assessment of energy products: environmental assessment of biofuels. 2EMPA, Bern (2007)

  33. Reijnders, L., Huijbregts, M.A.J.: Palm oil and the emission of carbon-based greenhouse gases. J. Clean. Prod. 16(4), 477–482 (2008)

    Article  Google Scholar 

  34. Reijnders, L., Huijbregts, M.A.J.: Biogenic greenhouse gas emissions linked to the life cycles of bio-diesel derived from European rapeseed and Brazilian soybeans. J. Clean. Prod. 16(18), 1943–1948 (2008)

    Article  Google Scholar 

  35. Harding, K.G., Dennis, J.S., von Blottnitz, H., Harrison, S.T.L.: A life-cycle comparison between inorganic and biological catalysis for the production of bio-diesel. J. Clean. Prod. 16(13), 1368–1378 (2008)

    Article  Google Scholar 

  36. Hu, Z., Tan, P., Yan, X., Lou, D.: Life cycle energy, environment and economic assessment of soybean-based bio-diesel as an alternative automotive fuel in China. Energy 33(11), 1654–1658 (2008)

    Article  Google Scholar 

  37. Prueksakorn, K., Gheewala, S.: Full chain energy analysis of bio-diesel from Jatropha curcas L. in Thailand. Environ. Sci. Technol. 42(9), 3388–3393 (2008)

    Article  Google Scholar 

  38. Rettenmaier, N., Koppen, S., Gartner, S., Reinhardt, G.: Screening life cycle assessment of hydro treated Jatropha oil. Inst. Energy Environ. Res. Heidelbg. 1–34 (2008)

  39. Huo, H., Wang, M., Bloyd, C., Putsche, V.: Life-cycle assessment of energy use and greenhouse gas emissions of soybean-derived bio-diesel and renewable fuels. Environ. Sci. Technol. 43(3), 750–756 (2009)

    Article  Google Scholar 

  40. Angarita, E.E.Y., Lora, E.E.S., da Costa, R.E., Torres, E.A.: The energy balance in the palm oil-derived methyl ester (PME) life cycle for the cases in Brazil and Colombia. Renew. Energy 34(12), 2905–2913 (2009)

    Article  Google Scholar 

  41. Pleanjai, S., Gheewala, S.H.: Full chain energy analysis of bio-diesel production from palm oil in Thailand. Appl. Energy 86(Supplement 1), S209–S214 (2009)

    Article  Google Scholar 

  42. Pleanjai, S., Gheewala, S.H., Garivait, S.: Greenhouse gas emissions from production and use of used cooking oil methyl ester as transport fuel in Thailand. J. Clean. Prod. 17(9), 873–876 (2009)

    Article  Google Scholar 

  43. Ndong, R., Montrejaud-Vignoles, M., Saint-Girons, O., Gabrielle, B., Pirot, R., Domergue, M., Sablayrolles, C.: Life cycle assessment of biofuels from Jatropha curcas in West Africa: a field study. GCB Bioenergy 1(3), 197–210 (2009)

    Article  Google Scholar 

  44. Lam, M.K., Lee, K.T., Mohamed, A.R.: Life cycle assessment for the production of bio-diesel: a case study in Malaysia for palm oil versus Jatropha oil. Biofuels, Bioprod. Biorefin. 3(6), 601–612 (2009)

    Article  Google Scholar 

  45. Kalnes, T.N., Koers, K.P., Marker, T., Shonnard, D.R.: A techno economic and environmental life cycle comparison of green diesel to bio-diesel and syndiesel. Environ. Prog. Sustain. Energy 28(1), 111–120 (2009)

    Article  Google Scholar 

  46. Cherubini, F., Bird, N.D., Cowie, A., Jungmeier, G., Schlamadinger, B., Woess-Gallasch, S.: Energy- and greenhouse gas-based LCA of biofuel and bioenergy systems: key issues, ranges and recommendations. Resour. Conserv. Recycl. 53(8), 434–447 (2009)

    Article  Google Scholar 

  47. Panichelli, L., Dauriat, A., Gnansounou, E.: Life cycle assessment of soybean based bio-diesel in Argentina for export. Int. J. Life Cycle Assess. 14(2), 144–159 (2009)

    Article  Google Scholar 

  48. Reinhard, J., Zah, R.: Global environmental consequences of increased bio-diesel consumption in Switzerland: consequential life cycle assessment. J. Clean. Prod. 17(Supplement 1), S46–S56 (2009)

    Article  Google Scholar 

  49. Xunmin, O., Xiliang, Z., Shiyan, C., Qingfang, G.: Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People’s Republic of China. Appl. Energy 86(Supplement 1), S197–S208 (2009)

    Google Scholar 

  50. Zah, R., Faist, M., Reinhard, J., Birchmeier, D.: Standardized and simplified life-cycle assessment (LCA) as a driver for more sustainable biofuels. J. Clean. Prod. 17(Supplement 1), S102–S105 (2009)

    Article  Google Scholar 

  51. Hossain, A.K., Davies, P.A.: Plant oils as fuels for compression ignition engines: a technical review and life-cycle analysis. Renew. Energy 35(1), 1–13 (2010)

    Article  Google Scholar 

  52. Kamahara, H., Hasanudin, U., Widiyanto, A., Tachibana, R., Atsuta, Y., Goto, N., Daimon, H., Fujie, K.: Improvement potential for net energy balance of bio-diesel derived from palm oil: a case study from Indonesian practice. Biomass Bioenergy 34(12), 1818–1824 (2010)

    Article  Google Scholar 

  53. Bureau, C.J., Disdier, A.C., Gauroy, C., Tréguer, D.: A quantitative assessment of the determinants of the net energy value of biofuels. Energy Policy 38(5), 2282–2290 (2010)

    Article  Google Scholar 

  54. Gupta, A., Bharadwaj, K.V., Lama, S., Mathur, J.: Energy analysis of irrigated jetropha cultivation for producing bio-diesel. Sci. Res. 1, 54–60 (2010)

    Google Scholar 

  55. Stephenson, A.L., Blottnitz, V.H., Brent, A.C., Dennis, J.S., Scott, S.A.: Global warming potential and fossil-energy requirements of bio-diesel production scenarios in South Africa. Energy Fuels 24(4), 2489–2499 (2010)

    Article  Google Scholar 

  56. Gmünder, S.M., Zah, R., Bhattacharjee, S., Classen, M.: Life cycle assessment of village electrification based on straight Jatropha oil in Chhattisgarh, India. Biomass Bioenergy 34(3), 347–355 (2010)

    Article  Google Scholar 

  57. Achten, W.M.J., Almeida, J., Fobelets, V., Bolle, E., Mathijs, E., Singh, V.P., Tewari, D.N., Verchot, V.L., Muys, B.: Life cycle assessment of Jatropha bio-diesel as transportation fuel in rural India. Appl. Energy 87(12), 3652–3660 (2010)

    Article  Google Scholar 

  58. Wang, M., Huo, H., Arora, S.: Methods of dealing with co-products of biofuels in life-cycle analysis and consequent results within the U.S. context. Energy Policy 39(10), 5726–5736 (2011)

  59. Nazir, N., Setyaningsih, D.: Life cycle assessment of bio-diesel production from palm oil and Jatropha oil in Indonesia. In: 7th Biomass Asia Workshop, Indonesia, pp. 1–6 (2010)

  60. Tsoutsos, T., Kouloumpis, V., Zafiris, T., Foteinis, S.: Life cycle assessment for bio-diesel production under Greek climate conditions. J. Clean. Prod. 18(4), 328–335 (2010)

    Article  Google Scholar 

  61. Papong, S., Chom-In, A., Noksa-nga, S., Malakul, P.: Life cycle energy efficiency and potentials of bio-diesel production from palm oil in Thailand. Energy Policy 38(1), 226–233 (2010)

    Article  Google Scholar 

  62. Wang, M.: Life-cycle analysis of biofuels. Plant Biotechnol. Sustain. Prod. Energy Co-prod. 66, 385–408 (2010)

    Article  Google Scholar 

  63. Iriarte, A., Rieradevall, J., Gabarrell, X.: Life cycle assessment of sunflower and rapeseed as energy crops under Chilean conditions. J. Clean. Prod. 18(4), 336–345 (2010)

    Article  Google Scholar 

  64. Mousavi-Avval, S.H., Rafiee, S., Jafari, A.: A comparative study on water and energy indicators for irrigated and rain-fed canola production systems in Iran. J. Sustain. Energy Environ. 1(4), 197–201 (2010)

    Google Scholar 

  65. Lee, S.B., Han, K.H., Lee, J.D., Hong, K.I.: Optimum process and energy density analysis of canola oil bio-diesel synthesis. J. Ind. Chem. Eng. 16(6), 1006–1010 (2010)

    Article  Google Scholar 

  66. Thamsiriroj, T., Murphy, J.D.: The impact of the life cycle analysis methodology on whether bio-diesel produced from residues can meet the EU sustainability criteria for biofuel facilities constructed after 2017. Renew. Energy 36(1), 50–63 (2011)

    Article  Google Scholar 

  67. Fore, S.R., Porter, P., Lazarus, W.: Net energy balance of small-scale on-farm bio-diesel production from canola and soybean. Biomass Bioenergy 35(5), 2234–2244 (2011)

    Article  Google Scholar 

  68. Chen, H., Chen, G.Q.: Energy cost of rapeseed-based bio-diesel as alternative energy in China. Renew. Energy 36(5), 1374–1378 (2011)

    Article  Google Scholar 

  69. Arvidsson, R., Persson, S., Fröling, M., Svanström, M.: Life cycle assessment of hydrotreated vegetable oil from rape, oil palm and Jatropha. J. Clean. Prod. 19(2–3), 129–137 (2011)

    Article  Google Scholar 

  70. Kaewcharoensombat, U., Prommetta, K., Srinophakun, T.: Life cycle assessment of bio-diesel production from Jatropha. J. Taiwan Inst. Chem. Eng. 42(3), 454–462 (2011)

    Article  Google Scholar 

  71. Wang, Z., Calderon, M.M., Lu, Y.: Lifecycle assessment of the economic, environmental and energy performance of Jatropha curcas L. bio-diesel in China. Biomass Bioenergy 35(7), 2893–2902 (2011)

    Article  Google Scholar 

  72. Gheewala, S.H.: Life Cycle Assessment (LCA) to Evaluate environmental impacts of bioenergy projects. J. Sustain. Energy Environ. 35–38 (2011)

  73. Malça, J., Freire, F.: Life-cycle studies of bio-diesel in Europe: a review addressing the variability of results and modeling issues. Renew. Sustain. Energy Rev. 15(1), 338–351 (2011)

    Article  Google Scholar 

  74. Hou, J., Zhang, P., Yuan, X., Zheng, Y.: Life cycle assessment of biodiesel from soybean, jatropha and microalgae in China conditions. Renew. Sustain. Energy Rev. 15(9), 5081–5091 (2011)

    Article  Google Scholar 

  75. Arvidsson, R., Fransson, K., Morgan Fröling, M., Svanström, M., Molander, S.: Energy use indicators in energy and life cycle assessments of biofuels—review and recommendations. J. Clean. Prod. 31, 54–61 (2012)

    Article  Google Scholar 

  76. Sawangkeaw, R., Teeravitud, S., Piumsomboon, P., Ngamprasertsith, S.: Biofuel production from crude palm oil with supercritical alcohols: comparative LCA studies. Bioresour. Technol. 120(1), 6–12 (2012)

    Article  Google Scholar 

  77. Kumar, S., Singh, J., Nanoti, S., Garg, M.O.: A comprehensive life cycle assessment (LCA) of Jatropha bio-diesel production in India. Bioresour. Technol. 110, 723–729 (2012)

    Article  Google Scholar 

  78. Chatterjee, R., Sharma, V., Kumar, S.: Life cycle assessment of energy performance of bio-diesel produced from Jatropha curcas. J. Renew. Sustain. Energy 4, 053110 (2012). doi:10.1063/1.4754156

    Article  Google Scholar 

  79. Nanaki, A.E., Koroneos, J.C.: Comparative LCA of the use of biodiesel, diesel and gasoline for transportation. J. Clean. Prod. 20(1), 14–19 (2012)

    Article  Google Scholar 

  80. Rocha, M.H., Capaz, S.R., Lora, S.E.E., Nogueira, H.A.L., Leme, V.M.M., Renó, G.L.M., Olmo, A.O.: Life cycle assessment (LCA) for biofuels in Brazilian conditions: a meta-analysis. Renew. Sustain. Energy Rev. 37, 435–459 (2014)

    Article  Google Scholar 

  81. Milazzo, M.F., Spina, F., Primerano, P., Bart, J.C.J.: Soy biodiesel pathways: global prospects. Renew. Sustain. Energy Rev. 26, 579–624 (2013)

    Article  Google Scholar 

  82. Rajaeifar, A.M., Ghobadian, B., Safa, M., Heidari, D.M.: Energy life-cycle assessment and CO2 emissions analysis of soybean based biodiesel: a case study. J. Clean. Prod. 66, 233–241 (2014)

    Article  Google Scholar 

  83. Chatterjee, R., Sharma, V., Mukherjee, S., Kumar, S.: Life cycle assessment of bio-diesel production—a comparative analysis. J. Inst. Eng. India Ser. C. 95(2), 143–149. doi: 10.1007/s40032-014-0105-5

  84. Larson, E.D.: A review of life-cycle analysis studies on liquid biofuel systems for the transport sector. Energy. Sustain. Dev. 10(2), 109–126 (2006)

    Article  Google Scholar 

  85. Lettens, S., Muys, B., Ceulemans, R., Moons, E., Garcia, J., Coppin, P.: Energy budget and greenhouse gas balance evaluation of sustainable coppice systems for electricity production. Biomass Bioenergy 24(3), 179–197 (2003)

    Article  Google Scholar 

  86. Cherubini, F., Strømman, A.H.: Life cycle assessment of bioenergy systems: state of the art and future challenges. Bioresour. Technol. 102(2), 437–451 (2011)

    Article  Google Scholar 

  87. Dubreuil, A., Gaillard, G., Müller-Wenk, R.: Key elements in a framework for land use impact assessment within LCA. Int. J. Life Cycle Assess. 12(1), 5–15 (2007)

    Article  Google Scholar 

  88. Koellner, T., Scholz, R.: Assessment of land use impacts on the natural environment. Int. J. Life Cycle Assess. 13(1), 32–48 (2008)

    Google Scholar 

  89. Leng, R., Wang, C., Zhang, C., Dai, D., Pu, G.: Life cycle inventory and energy analysis of cassava-based fuel ethanol in China. J. Clean. Prod. 16(3), 374–384 (2008)

    Article  Google Scholar 

  90. Spirinckx, C., Ceuterick, D.: Bio-diesel and fossil diesel fuel: comparative life cycle assessment. Int. J. Life Cycle Assess. 1(3), 27–132 (1996)

    Article  Google Scholar 

  91. Bernesson, S.: Life cycle assessment of rapeseed oil, rape methyl ester and ethanol as fuels—a comparison between large- and small-scale production. Department of Biometry and Engineering, Swedish University of Agricultural Sciences, Uppsala (2004)

    Google Scholar 

  92. Edwards, R., Larivé, J-F., Mahieu, V., Rouveirolles. P.: Well-to-wheel analysis of future automotive fuels and power trains in the European context, Version 2c, Report from CONCAWE, EU car and Joint Research Centre of the European Commission, Brussels (2007)

  93. Spatari, S., Zhang, Y., MacLean, H.L.: Life cycle assessment of switch grass- and corn stover-derived ethanol-fuelled automobiles. Environ. Sci. Technol. 39(24), 9750–9758 (2005)

    Article  Google Scholar 

  94. Fleming, J.S., Habibi, S., MacLean, H.L.: Investigating the sustainability of lignocellulose-derived fuels for light-duty vehicles. Transp. Res. Part D Transp. Environ. 11, 146–159 (2006)

    Article  Google Scholar 

  95. van Vliet, O.P.R., Faaij, A.P.C., Turkenburg, W.C.: Fischer–Tropsch diesel production in a well-to-wheel perspective: a carbon, energy flow and cost analysis. Energy Convers. Manag. 50(4), 855–876 (2009)

    Article  Google Scholar 

  96. Williams, P.R.D., Inman, D., Aden, A., Heath, G.A.: Environmental and sustainability factors associated with next-generation biofuels in the US: What do we really know? Environ. Sci. Technol. 43, 4763–4775 (2009). doi:10.1021/es900250

    Article  Google Scholar 

  97. Spatari, S., Bagley, D.M., MacLean, H.L.: Life cycle evaluation of emerging lignocellulosic ethanol conversion technologies. Bioresour. Technol. 101(2), 654–667 (2010)

    Article  Google Scholar 

  98. Prueksakorn, K., Gheewala, H.S., Malakul, P., Bonnet, S.: Energy analysis of Jatropha plantation systems for bio-diesel production in Thailand. Energy Sustain. Dev. 14(1), 1–5 (2010)

    Article  Google Scholar 

  99. Farrell, A.E., Plevin, R.J., Turner, B.T., Jones, A.D., O’Hare, M., Kammen, D.M.: Ethanol can contribute to energy and environmental goals. Science 311, 506–508 (2006)

    Article  Google Scholar 

  100. Schmidt, J.H.: Life cycle assessment of rapeseed oil and palm oil. Department of Development and Planning, Aalborg University, Aalborg (2007)

    Google Scholar 

  101. Yusoff, S., Hansen, S.B.: Feasibility study of performing an life cycle assessment on crude palm oil production in Malaysia. Int. J. Life Cycle Assess. 12(1), 50–58 (2007)

    Article  Google Scholar 

  102. Huijbregts, M.A.J., Rombouts, L.J.A., Hellweg, S., Frischknecht, R., Hendriks, A.J., van de Meent, A.M.J., Ragas, L., Reijnders Struijs, J.: Is cumulative fossil energy demand a useful indicator for the environmental performance of products? Environ. Sci. Technol. 40(3), 641–648 (2006)

    Article  Google Scholar 

  103. Cherubini, F., Jungmeier, G.: LCA of a bio-refinery concept producing bioethanol, bioenergy, and chemicals from switch grass. Int. J. Life Cycle Assess. 15(1), 53–66 (2010)

    Article  Google Scholar 

  104. Huppes, G.: LCA yesterday, today and tomorrow. Centre of environmental science: Leiden University, Leiden (1996)

    Google Scholar 

  105. Udo de Haes, H.A.: Applications of life cycle assessment: expectations, drawbacks and perspectives. J. Clean. Prod. 3–4, 131–137 (1993)

    Article  Google Scholar 

  106. Lindfors, L.-G., Christiansen, K., Hoffman, L., Virtanen, Y., Juntilla, V., Hanssen, O.J., Rönning, A., Ekvall, T., Finnveden, G.: Nordic guidelines on life-cycle assessment. Nord. Nordic Council of Ministers, Copenhagen, Denmark (1995)

  107. Steen, B.: A systematic approach to environmental priority strategies in product development (EPS). Version 2000—general system characteristics/models and data of the default method. CPM Report 1999, Chalmers University of Technology, Gothenburg, Sweden, 4–5 (1999)

  108. Goedkoop, M., Spriensma, R: The eco-indicator 99—a damage-oriented method for life cycle impact assessment. Methodology Report, 2nd edn., 17 April 2000. PRé Consultants, B.V. Amersfoort, The Netherlands. (2000)

  109. Huppes, G., Davidson, M.D., Kuyper, J., van Oers, L., Udo de Haes, H.A., Warringa, G.: Eco-efficient environmental policy in oil and gas production in The Netherlands. Ecol. Econ. 61(1), 43–51 (2007)

    Article  Google Scholar 

  110. Ekvall, T., Andrae, A.: Attributional and consequential environmental assessment of the shift to lead-free solders. Int. J. Life Cycle Assess. 11(5), 344–353 (2006)

    Article  Google Scholar 

  111. Schmidt, J.H.: System delimitation in agricultural consequential LCA—outline of methodology and illustrative case study of wheat in Denmark. Int. J. Life Cycle Assess. 13(4), 350–364 (2008)

    Article  Google Scholar 

  112. Anex, R., Lifset, R.: Assessing corn ethanol: relevance and responsibility. J. Ind. Ecol. 13(4), 479–482 (2009)

    Article  Google Scholar 

  113. Foteinis, S., Volikaki, C., Pappas, D., Tsoutsos, T.: Life cycle analysis of bioethanol under the Greek production conditions. In: Proceedings of the 2nd Greek National Biofuels Conference, Greek (2007)

  114. ISO: ISO 14044 International Standard. In: Environmental Management—Life Cycle Assessment—Requirements and Guidelines. International Organisation for Standardisation, Geneva, Switzerland (2006b)

  115. PRé Consultants. Database manual SimaPro. Introduction to LCA with SimaPro 7, The Netherlands (2008)

  116. Finnveden, G., Hauschild, M.Z., Ekvall, T., Guinee, J., Heijungs, R., Hellweg, S., Koehler, A., Pennington, D., Sangwon Suh, S.: Recent developments in life cycle assessment. J. Environ. Manag. 91(1), 1–21 (2009)

    Article  Google Scholar 

  117. Huijbregts, M., Gilijamse, W., Ragas, A., Reijnders, L.: Evaluating uncertainty in environmental life-cycle assessment. A case study comparing two insulation options for a Dutch one-family dwelling. Environ. Sci. Technol. 37, 2600–2608 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajeshwari Chatterjee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chatterjee, R., Sharma, V. & Mukherjee, S. The Environmental Impacts and Allocation Methods Used in LCA Studies of Vegetable Oil-Based Bio-diesels. Waste Biomass Valor 6, 579–603 (2015). https://doi.org/10.1007/s12649-015-9375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-015-9375-2

Keywords