Waste and Biomass Valorization

, Volume 6, Issue 3, pp 353–361 | Cite as

Bioethanol from Dried Household Food Waste Applying Non-isothermal Simultaneous Saccharification and Fermentation at High Substrate Concentration

  • Danai G. Alamanou
  • Dimitris Malamis
  • Diomi Mamma
  • Dimitris Kekos
Original Paper


Household food waste (HFW) a complex biomass containing soluble sugars, lipids, proteins, cellulose, was used for bioethanol production at high substrate concentration and low enzyme loadings. HFW was subjected to microwave digestion (121 °C, 15 min) at 20 % (w/v) substrate concentration in the presence or absence of dilute sulfuric acid. The whole slurry was hydrolyzed and simultaneously saccharified and fermented using 5 and 10 FPU/g dry HFW. Enzymatic hydrolysis resulted in glucose yields in the range of 44–47 % of the theoretical (based on potential glucose content in the HFW) for both enzyme loadings tested, indicating that enzyme loadings lower than 10 FPU/g HFW could be used. During SSF tests the highest ethanol production (23.12 g/L) was obtained from the pretreated in the presence of dilute sulfuric acid HFW at 10 FPU/g HFW. In an attempt to protect the soluble fraction from possible decomposition and increase ethanol concentration, hot water treatment and higher substrate concentrations were examined. At optimal pretreatment conditions (100 °C, 60 min), glucose yields of 54.69 and 58.39 % (of the theoretical based on potential glucose content in the HFW) were achieved at 30 and 50 % w/v substrate concentration, respectively, which corresponds to an ethanol production of 17.44 and 31.03 g/L, respectively. In order to overcome the technical difficulties due to high initial viscosity of the material, when operating hydrolysis and fermentation at high initial substrate concentrations, a non-isothermal simultaneous saccharification and fermentation process operating in fed-batch mode was applied at 40 % (w/v) final substrate concentration, resulting in 42.66 g/L (or 107 g/kg HFW) ethanol production.


Bioethanol Household food waste High solids Fed batch non-isothermal simultaneous saccharification and fermentation 



This work is based on the research that was carried out in the framework of a LIFE + project entitled: «Development and demonstration of an innovative method of converting waste into bioethanol» Waste2Bio, (LIFE 11 ENV/GR/000949, 2012–2015), which is co-financed by the European Commission. The authors would like to thank Novozymes Corporation for generously providing the cellulase enzyme samples.


  1. 1.
    Balat, M.: Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Convers. Manag. 52, 858–875 (2011)CrossRefGoogle Scholar
  2. 2.
    European Commission: Green paper—on the management of bio-waste in the European Union. Brussels (Belgium), 3 December 2008 (COM(2008) 811 final)Google Scholar
  3. 3.
    Lin, C.S.K., Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S., Clark, J.H., Koutinas, A.A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesby, R., Luque, R.: Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ. Sci. 6, 426–464 (2013)CrossRefGoogle Scholar
  4. 4.
    Hong, Y.S., Yoon, H.H.: Ethanol production from food residues. Biomass Bioenergy 35, 3271–3275 (2011)CrossRefGoogle Scholar
  5. 5.
    Commission, European: Directive 2003/30/EC of the European parliament and of the council of 8 May 2003 on the promotion of the use of biofuels or other renewable fuels for transport. Off. J. Eur. Union L. 123, 42–46 (2003)Google Scholar
  6. 6.
    Kim, J.H., Lee, J.C., Pak, D.: Feasibility of producing ethanol from food waste. Waste Manag 31, 2121–2125 (2011)CrossRefGoogle Scholar
  7. 7.
    Hahn-Hägerdal, B., Gable, M., Gorwa-Grauslund, M.F., Lidén, G., Zacchi, G.: Bio-ethanol—the fuel of tomorrow from the residues of today. Trends Biotechnol. 24(12), 549–556 (2006)CrossRefGoogle Scholar
  8. 8.
    Olofsson, K., Bertilsson, M., Lidén, G.: A short review on SSF—an interesting process option for ethanol production from lignocellulosic feedstocks. Biotechnol. Biofuels 1, 7 (2008). doi: 10.1186/1754-6834-1-7 CrossRefGoogle Scholar
  9. 9.
    Fan, Z.L., Lynd, L.R.: Conversion of paper sludge to ethanol. I: impact of feeding frequency and mixing energy characterization. Bioproc. Biosyst. Eng. 30, 27–34 (2007)CrossRefGoogle Scholar
  10. 10.
    Hoyer, K., Galbe, M., Zacchi, G.: Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter. Biotechnol. Biofuels 3, 14 (2010). doi: 10.1186/1754-6834-3-14 CrossRefGoogle Scholar
  11. 11.
  12. 12.
    Sotiropoulos, A., Malamis, D., Loizidou, M.: Pilot scale demonstration of food waste drying at household level. In: VENICE2012 Fourth International Symposium on Energy from Biomass and Waste, San Servolo, Venice, Italy, 12–15 November 2012Google Scholar
  13. 13.
    Ghose, T.K.: Measurement of cellulase activities. Pure Appl. Chem. 59(2), 257–268 (1987)CrossRefGoogle Scholar
  14. 14.
    AOAC: Official Methods of Analysis of the Association of Official Analytical Chemists, 15th edn. AOAC Inc, USA (1990)Google Scholar
  15. 15.
    Phatak, L., Chang, K.C., Brown, G.: Isolation and characterization of pectin in sugar-beet pulp. J. Food Sci. 53, 830–833 (1988)CrossRefGoogle Scholar
  16. 16.
    Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D.: Determination of structural carbohydrates and lignin in biomass. Technical report NREL/TP-510-42618 (2012)Google Scholar
  17. 17.
    Vázquez, M., Oliva, M., Téllez-Luis, S.J., Ramírez, J.A.: Hydrolysis of sorghum straw using phosphoric acid: evaluation of furfural production. Bioresour. Technol. 98, 3053–3060 (2007)CrossRefGoogle Scholar
  18. 18.
    Miller, G.L.: Use of dinitrosalisylic acid reagent for determination of reducing sugars. Anal. Chem. 31, 426–428 (1959)CrossRefGoogle Scholar
  19. 19.
    Wyman, C.E.: What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25(4), 153–157 (2007)CrossRefGoogle Scholar
  20. 20.
    Kumar, R., Wyman, C.E.: Effect of enzyme supplementation at moderate cellulase loadings on initial glucose and xylose release from corn stover solids pretreated by leading technologies. Biotechnol. Bioeng. 102, 457–467 (2009)CrossRefGoogle Scholar
  21. 21.
    Dogaris, I., Gkounda, O., Mamma, D., Kekos, D.: Bioconversion of dilute-acid pretreated sorghum bagasse to ethanol by Neurospora crassa. Appl. Microbiol. Biotechnol. 95, 541–550 (2012)CrossRefGoogle Scholar
  22. 22.
    Ballesteros, M., Sáez, F., Ballesteros, I., Manzanares, P., Negro, M.J., Martínez, J.M., Castañeda, R., Dominguez, J.M.O.: Ethanol production from the organic fraction obtained after thermal pretreatment of municipal solid waste. Appl. Biochem. Biotechnol. 161, 423–431 (2010)CrossRefGoogle Scholar
  23. 23.
    Li, K., Zhang, K., Andresen, J.M.: Production of fermentable sugars from enzymatic hydrolysis of pretreated municipal solid waste after autoclave process. Fuel 92, 84–88 (2012)CrossRefGoogle Scholar
  24. 24.
    Zheng, Y., Pan, Z., Zhang, R., Labavitch, J.M., Wang, D., Teter, S.A., Jenkins, B.M.: Evaluation of different biomass materials as feedstock for fermentable sugar production. Appl. Biochem. Biotechnol. 136–140, 423–435 (2007)Google Scholar
  25. 25.
    Li, A., Antizar-Ladislao, B., Khraisheh, M.: Bioconversion of municipal solid waste to glucose for bio-ethanol production. Bioproc. Biosyst. Eng. 30, 189–196 (2007)CrossRefGoogle Scholar
  26. 26.
    Sassner, P., Galbe, M., Zacchi, G.: Techno-economic evaluation of bioethanol production from three different lignocellulosic materials. Biomass Bioenergy 32, 422–430 (2008)CrossRefGoogle Scholar
  27. 27.
    Jørgensen, H., Kristensen, J.B., Felby, C.: Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioprod. Biorefining 1, 119–134 (2007)CrossRefGoogle Scholar
  28. 28.
    Wu, A., Lee, Y.Y.: Nonisothermal simultaneous saccharification and fermentation for direct conversion of lignocellulosic biomass to ethanol. Appl. Biochem. Biotechol. 70–72, 1109–1117 (1988)Google Scholar
  29. 29.
    Varga, E., Klinke, H.B., Réczey, K., Thomsen, A.B.: High solid simultaneous saccharification and fermentation of wet oxidized corn stover to ethanol. Biotechnol. Bioeng. 88(5), 567–574 (2004)CrossRefGoogle Scholar
  30. 30.
    Walker, K., Vadlani, P., Madl, R., Ugorowski, P., Hohn, K.L.: Ethanol fermentation from food processing waste. Environ. Prog. Sustain. Energy (2012). doi: 10.1002/ep.11700 Google Scholar
  31. 31.
    Cekmecelioglu, D., Uncu, O.N.: Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Manag 33, 735–739 (2013)CrossRefGoogle Scholar
  32. 32.
    Man, H.L., Beher, S.K., Park, H.S.: Optimization of operational parameters for ethanol production from Korean food waste leachate. Int. J. Environ. Sci. Technol. 7, 157–164 (2010)CrossRefGoogle Scholar
  33. 33.
    Moon, H.C., Song, I.S., Kim, J.C., Shirai, Y., Lee, D.H., Kim, J.K., Chung, S.O., Kim, D.H., Oh, K.K., Cho, Y.S.: Enzymatic hydrolysis of food waste and ethanol fermentation. Int. J. Energy Res. 33, 164–172 (2009)CrossRefGoogle Scholar
  34. 34.
    Tang, Y.-Q., Koike, Y., Liu, K., An, M.-Z., Morimura, S., Wu, X.-L., Kida, K.: Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioenergy 32, 1037–1045 (2008)CrossRefGoogle Scholar
  35. 35.
    Yan, S., Chen, X., Wu, J., Wang, P., Ye, J., Yao, J.: Enzymatical hydrolysis of food waste and ethanol production from the hydrolysate. Renew. Energy 36, 1259–1265 (2011)CrossRefGoogle Scholar
  36. 36.
    Yan, S., Wang, P., Zhai, Z., Yao, J.: Fuel ethanol production from concentrated food waste hydrolysates in immobilized cell reactors by Saccharomyces cerevisiae H058. J. Chem. Technol. Biotechnol. 86, 731–738 (2010)CrossRefGoogle Scholar
  37. 37.
    Yan, S., Chen, X., Wu, J., Wang, P.: Ethanol production from concentrated food waste hydrolysates with yeast cells immobilized on corn stalk. Appl. Microbiol. Biotechnol. 94, 829–838 (2012)CrossRefGoogle Scholar
  38. 38.
    Wang, Q., Ma, H., Xu, W., Gong, L., Zhang, W., Zou, D.: Ethanol production from kitchen garbage using response surface methodology. Biochem. Eng. J. 39, 604–610 (2008)CrossRefGoogle Scholar
  39. 39.
    Koike, Y., An, M.-Z., Tang, Y.-Q., Syo, T., Osaka, N., Morimura, S., Kida, K.: Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process. J. Biosci. Bioeng. 108(6), 508–512 (2009)CrossRefGoogle Scholar
  40. 40.
    Lissens, G., Klinke, H., Verstraete, W., Ahring, B., Thomsen, A.B.: Wet oxidation treatment of organic household waste enriched with wheat straw for simultaneous saccharification and fermentation into ethanol. Environ. Technol. 25, 647–655 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  • Danai G. Alamanou
    • 1
  • Dimitris Malamis
    • 2
  • Diomi Mamma
    • 1
  • Dimitris Kekos
    • 1
  1. 1.Biotechnology Laboratory, School of Chemical EngineeringNational Technical University of AthensZografouGreece
  2. 2.Unit of Environmental Science and Technology, School of Chemical EngineeringNational Technical University of AthensZografouGreece

Personalised recommendations