Determination of the Higher Heating Value of Pig Manure


The ability of using novel method of near-infrared (NIR) spectra to predict the composition and higher heating value (HHV) of dry pig manure was examined. Number of pig manure solid fractions variously pre-treated samples were collected in Denmark, from different pig slurry treatment plants (using mechanical or chemical–mechanical separation) and then analysed for their energy values. These values were determined by conventional method using bomb calorimetry and also calculated based on ultimate analysis. NIR spectra method was successfully applied and reasonable R2 values were obtained for the independent prediction set for nitrogen, ash, and the HHV. NIR also showed ability for predicting which type of treatment plants the samples came from. In addition, new empirical equations, based on ultimate analyses of pig manure solids used for prediction of the HHV was established.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2


  1. 1.

    Gerber, P.J., Steinfeld, H., Henderson, B., Mottet, A., Opio, C., Dijkman, J., Falcucci, A., Tempio, G.: Tackling climate change through livestock: a global assessment of emissions and mitigation opportunities. Food and Agriculture Organization of the United Nations (FAO), Rome (2013)

    Google Scholar 

  2. 2.

    Irish Statute Book Statutory Instrument No 610/2010—European Communities (Good Agricultural Practice for Protection of Waters) Regulations http://www.irishstatutebookie/2010/en/si/0610html (2010). Accessed 18 July 2010

  3. 3.

    Thipkhunthod, P., Meeyoo, V., Rangsunvigit, P., Kitiyanan, B., Siemanond, K., Rirksomboon, T.: Predicting the heating value of sewage sludges in Thailand from proximate and ultimate analyses. Fuel 84, 849–857 (2005)

    Article  Google Scholar 

  4. 4.

    Jenkins, B.M.: Physical properties of biomass. In: Kitani, O., Hall, C.W. (eds.) Biomass Handbook Chap Gordon and Breach New York NY (1989)

  5. 5.

    Jørgensen, K., Jensen, L.S.: Chemical and biochemical variation in animal manure solids separated using different commercial separation technologies. Bioresour. Technol 100, 3088–3096 (2009)

    Article  Google Scholar 

  6. 6.

    Huang, C., Han, L., Yang, Z., Liu, X.: Prediction of heating value of straw by proximate data, and near infrared spectroscopy. Energy Convers. Manag 49, 3433–3438 (2008)

    Article  Google Scholar 

  7. 7.

    Sørensen, L.K., Sørensen, P., Birkmose, T.S.: Application of reflectance near infrared spectroscopy for animal slurry analysis. Soil Sci. Soc. Am. J 71, 1398–1405 (2007)

    Article  Google Scholar 

  8. 8.

    Huang, G., Han, L., Yang, Z., Wang, X.: Evaluation of the nutrient metal content in Chinese animal manure compost using near infrared spectroscopy (NIRS). Bioresour. Technol 99, 8164–8169 (2008)

    Article  Google Scholar 

  9. 9.

    Saeys, W., Mouazen, A.M., Ramon, H.: Potential for onsite and online analysis of pig manure using visible and near infrared reflectance spectroscopy. Biosyst. Eng 91, 393–402 (2005)

    Article  Google Scholar 

  10. 10.

    Hayes, D.J.M.: Development of near infrared spectroscopy models for the quantitative prediction of the lignocellulosic components of wet Miscanthus samples. Bioresour. Technol. 119, 393–405 (2012)

    Article  Google Scholar 

  11. 11.

    Wold, S., Sjostrom, M., Eriksson, L.: PLS-regression: a basic tool of chemometrics. Chemom. Intell. Lab. 58, 109–130 (2001)

    Article  Google Scholar 

  12. 12.

    Savitzky, A., Golay, M.J.E.: Smoothing and differentiation of data by simplified least squares procedures. Anal. Chem 36, 1627–1639 (1964)

    Article  Google Scholar 

  13. 13.

    Workman, J.J.: NIR spectroscopy calibration basics. In: Burns, D.A., Ciurczak. E.W., Dekker. M. (eds.) Handbook of Near Infrared Analysis, 2nd ed. New York (2001)

  14. 14.

    Friedl, A., Padouvas, E., Rotter, H., Varmuza, K.: Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544, 191–198 (2005)

    Article  Google Scholar 

  15. 15.

    Demirbas, A., Güllü, D., Caglar, A., Akdeniz, F.: Determination of calorific values of fuel from lignocellulosics. Energ. Source 19, 765–770 (1997)

    Article  Google Scholar 

  16. 16.

    Moller, H.B., Sommer, S.G., Ahring, B.K.: Separation efficiency and particle size distribution in relation to manure type and storage conditions. Bioresour. Technol 85, 189–196 (2002)

    Article  Google Scholar 

  17. 17.

    van Kessel, J.S., Reeves, J.B., Meisinger, J.J.: Storage and handling can alter the mineralization characteristics of manure. J. Environ. Qual 28, 1984–1990 (1999)

    Article  Google Scholar 

  18. 18.

    Hansen, M.N., Henriksen, K., Sommer, S.G.: Observations of production and emission of greenhouse gases and ammonia during storage of solids separated from pig slurry: effects of covering. Atmos. Environ 40, 4172–4181 (2006)

    Article  Google Scholar 

  19. 19.

    Petersen, J., Sørensen, P.: Loss of nitrogen and carbon during storage of the fibrous fraction of separated pig slurry and influence on nitrogen availability. J. Agric. Sci 146, 403–413 (2008)

    Article  Google Scholar 

  20. 20.

    Elemental Analysis Fakultät für Chemie Mikroanalytisches Laboratorium Universitat Wien available URL http://www.univieacat/Mikrolabor/chn_enghtm#Interferenzen (2014). Accessed 18 July 2014

  21. 21.

    Naramabuye, F.X., Haynes, R.J.: The liming effect of five organic manures when incubated with an acid soil. J. Plant Nutr. Soil Sci 170, 615–622 (2007)

    Article  Google Scholar 

  22. 22.

    Sommer, S.G., Husted, S.: The chemical buffer system in raw and digested animal slurry. J. Agri. Sci 124, 45–53 (1995)

    Article  Google Scholar 

  23. 23.

    Demirbas, A.: Calculation of higher heating values of biomass fuels. Fuel 76, 431–434 (1997)

    Article  Google Scholar 

  24. 24.

    Yin, C.-Y.: Prediction of higher heating values of biomass from proximate and ultimate analyses. Fuel 90, 1128–1132 (2011)

    Article  Google Scholar 

  25. 25.

    Channiwala, S., Parikh, P.: A unified correlation for estimating HHV of solid liquid and gaseous fuels. Fuel 81, 1051–1063 (2002)

    Article  Google Scholar 

  26. 26.

    Jablonský, M., Ház, A., Orságová, A., Botková, M., Šmatko, L., Kočiš, J.: Relationships between elemental carbon contentsand heating values of lignins. In: Proceedings of the 4th International Conference Renewable Energy Sources (2013)

Download references


This research was partially supported by The Danish Council for Strategic Research, Danish Ministry of Science, Technology and Innovation, the program for sustainable energy and environment the project CLEANWASTE (Project No. J. nr. 2104-09-0056).

Author information



Corresponding author

Correspondence to W. Kwapinski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wnetrzak, R., Hayes, D.J.M., Jensen, L.S. et al. Determination of the Higher Heating Value of Pig Manure. Waste Biomass Valor 6, 327–333 (2015).

Download citation


  • Higher heating value
  • Pig manure
  • Near-infrared
  • Slurry
  • Energy