Skip to main content

Advertisement

Log in

Enzyme Production from Food Wastes Using a Biorefinery Concept

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

According to Food and Agricultural Organization (FAO), one-third of food produced globally for human consumption (nearly 1.3 billion tonnes) is lost along the food supply chain. In many countries food waste is currently landfilled or incinerated together with other combustible municipal wastes for possible recovery of energy. However, these two options are facing more and more economic and environmental stresses. Due to its organic- and nutrient-rich nature, theoretically food waste can be converted to valuable products (e.g. bio-products such as methane, hydrogen, ethanol, enzymes, organic acids, chemicals and fuels) through various fermentation processes. Such conversion of food waste is potentially more profitable than its conversion to animal feed or transportation fuel. Food waste valorisation has therefore gained interest, with value added bio-products such as methane, hydrogen, ethanol, enzymes, organic acids, chemicals, and fuels. Therefore, the aim of this review is to provide information on the food waste situation with emphasis on Asia–Pacific countries and the state of the art food waste processing technologies to produce enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Lundqvist, J., de Fraiture, C., Molden, D.: Saving water: from field to fork: curbing losses and wastage in the food chain, in SIWI policy brief. Stockholm International Water Institute Stockholm, Sweden (2008)

    Google Scholar 

  2. FAO, Towards the future we want: end hunger and make the transition to sustainable agricultural and food systems. 2012, Food and agriculture organization of the United Nations Rome

  3. Melikoglu, M., Lin, C.S.K., Webb, C.: Analysing global food waste problem: pinpointing the facts and estimating the energy content. Cent Eur J Eng 3(2), 157–164 (2013)

    Google Scholar 

  4. National-Environment-Agency. http://app2.nea.gov.sg/topics_wastestats.aspx. 2011 [cited 2013 3 February]

  5. Lin, C.S.K., Pfaltzgraff, L.A., Herrero-Davila, L., Mubofu, E.B., Abderrahim, S., Clark, J.H., Koutinas, A.A., Kopsahelis, N., Stamatelatou, K., Dickson, F., Thankappan, S., Mohamed, Z., Brocklesby, R., Luque, R.: Food waste as a valuable resource for the production of chemicals, materials and fuels. Current situation and global perspective. Energy Environ Sci 6(2), 426–464 (2013)

    Google Scholar 

  6. Ngoc, U.N., Schnitzer, H.: Sustainable solutions for solid waste management in Southeast Asian countries. Waste Manag 29, 1982–1995 (2009)

    Google Scholar 

  7. M.H. Kim, H.B. Song, Y. Song, I.T. Jeong, and J.W. Kim, Evaluation of food waste disposal options in terms of global warming and energy recovery: Korea. Int. J. Energy Environ. Eng, 2013. 4(1)

  8. Okumura, S., Tasaki, T., Moriguchi, Y.: Economic growth and trends of municipal waste treatment options in Asian countries. J Mater Cycles Waste Manage 16(2), 335–346 (2014)

    Google Scholar 

  9. Othman, S.N., Noor, Z.Z., Abba, A.H., Yusuf, R.O., Abu, M.A.: Hassan, review on life cycle assessment of integrated solid waste management in some Asian countries. J Clean Prod 41, 251–262 (2013)

    Google Scholar 

  10. Takata, M., Fukushima, K., Kino-Kimata, N., Nagao, N., Niwa, C., Toda, T.: The effects of recycling loops in food waste management in Japan: based on the environmental and economic evaluation of food recycling. Sci Total Environ 432, 309–317 (2012)

    Google Scholar 

  11. Gajalakshmi, S., Abbasi, S.A.: Solid waste management by composting: state of the art. Critical Rev Environ Sci Technol 38(5), 311–400 (2008)

    Google Scholar 

  12. Cekmecelioglu, D., Demirci, A., Graves, R.E., Davitt, N.H.: Applicability of optimized in-vessel food waste composting for windrow systems. Biosyst Eng 91, 479–486 (2005)

    Google Scholar 

  13. Aye, L., Widjaya, E.R.: Environmental and economic analysis of waste disposal options for traditional markets in Indonesia. Waste Manag 26, 1180–1191 (2006)

    Google Scholar 

  14. Hirai, Y., Murata, M., Sakai, S., Takatsuki, H.: Life cycle assessment on food waste management and recycling. Waste Manag Res 12(5), 219–228 (2001)

    Google Scholar 

  15. Esteban, M.B., Garcia, A.J., Ramos, P., Marquez, M.C.: Evaluation of fruit, vegetable and fish wastes as alternative feedstuffs in pig diets. Waste Manag 27, 193–200 (2007)

    Google Scholar 

  16. Han, S.K., Shin, H.S.: Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy 29(6), 569–577 (2004)

    Google Scholar 

  17. Sakai, K., Ezaki, Y.: Open L-lactic acid fermentation of food refuse using thermophilic Bacillus coagulans and fluorescence in situ hybridization analysis of microflora. J Biosci Bioeng 101(6), 457–463 (2006)

    Google Scholar 

  18. Yang, S.Y., Ji, K.S., Baik, Y.H., Kwak, W.S., McCaskey, T.A.: Lactic acid fermentation of food waste for swine feed. Bioresour Technol 97(15), 1858–1864 (2006)

    Google Scholar 

  19. Zhang, C., Xiao, G., Peng, L., Su, H., Tan, T.: The anaerobic co-digestion of food waste and cattle manure. Bioresour Technol 129, 170–176 (2013)

    Google Scholar 

  20. Zhang, M., Shukla, P., Ayyachamy, M., Permaul, K., Singh, S.: Improved bioethanol production through simultaneous saccharification and fermentation of lignocellulosic agricultural wastes by Kluyveromyces marxianus 6556. World J Microbiol Biotechnol 26(6), 1041–1046 (2010)

    Google Scholar 

  21. He, Y., Bagley, D.M., Leung, K.T., Liss, S.N., Liao, B.: Recent advances in membrane technologies for biorefining and bioenergy production. Biotechnol Adv 30(4), 817–858 (2012)

    Google Scholar 

  22. Pan, J., Zhang, R., El-Mashad, H.M., Sun, H., Ying, Y.: Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. Int J Hydrogen Energy 33(23), 6968–6975 (2008)

    Google Scholar 

  23. Vavouraki, A.I., Angelis, E.M., Kornaros, M.: Optimization of thermo-chemical hydrolysis of kitchen wastes. Waste Manag 34(1), 167–173 (2014)

    Google Scholar 

  24. He, M., Sun, Y., Zou, D., Yuan, H., Zhu, B., Li, X., Pang, Y.: Influence of temperature on hydrolysis acidification of food waste. Procedia Environ Sci 16, 85–94 (2012)

    Google Scholar 

  25. Sanders, J., Scott, E., Weusthuis, R., Mooibroek, H.: Bio-refinery as the bio-inspired process to bulk chemicals. Macromol Biosci 7(2), 105–117 (2007)

    Google Scholar 

  26. Kim, J.K., Oh, B.R., Shin, H., Eom, C., Kim, S.W.: Statistical optimization of enzymatic saccharification and ethanol fermentation using food waste. Process Biochem 43(11), 1308–1312 (2008)

    Google Scholar 

  27. Kwon, S.H., Lee, D.H.: Evaluation of Korean food waste composting with fed-batch operations I: using water extractable total organic carbon contents (TOCw). Process Biochem 39(10), 1183–1194 (2004)

    Google Scholar 

  28. Rao, M.S., Singh, S.P.: Bioenergy conversion studies of organic fraction of MSW: kinetic studies and gas yield–organic loading relationships for process optimisation. Bioresour Technol 95(2), 173–185 (2004)

    Google Scholar 

  29. Ramos, C., Buitron, G., Moreno-Andrade, I., Chamy, R.: Effect of the initial total solids concentration and initial pH on the bio-hydrogen production from cafeteria food waste. Int J Hydrogen Energy 37(18), 13288–13295 (2012)

    Google Scholar 

  30. Ohkouchi, Y., Inoue, Y.: Direct production of L(+)-lactic acid from starch and food wastes using Lactobacillus manihotivorans LMG18011. Bioresour Technol 97, 1554–1562 (2006)

    Google Scholar 

  31. Kim, J.K., Oh, B.R., Chun, Y.N., Kim, S.W.: Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J Biosci Bioeng 102(4), 328–332 (2006)

    Google Scholar 

  32. Tang, Y.Q., Koike, Y., Liu, K., An, M.Z., Morimura, S., Wu, X.L., Kida, K.: Ethanol production from kitchen waste using the flocculating yeast Saccharomyces cerevisiae strain KF-7. Biomass Bioenergy 32(11), 1037–1045 (2008)

    Google Scholar 

  33. Wang, Q., Ma, H., Xu, W., Gong, L., Zhang, W., Zou, D.: Ethanol production from kitchen garbage using response surface methodology. Biochem Eng J 39(3), 604–610 (2008)

    Google Scholar 

  34. Zhang, B., He, Z., Zhang, L., Xu, J., Shi, H., Cai, W.: Anaerobic digestion of kitchen wastes in a single-phased anaerobic sequencing batch reactor (ASBR) with gas-phased absorb of CO2. J Environ Sci 17(2), 249–255 (2005)

    Google Scholar 

  35. Ma, H., Wang, Q., Zhang, W., Xu, W., Zou, D.: Optimization of the medium and process parameters for ethanol production from kitchen garbage by Zymomonas mobilis. Int J Green Energy 5(6), 480–490 (2008)

    Google Scholar 

  36. Uncu, O.N., Cekmecelioglu, D.: Cost-effective approach to ethanol production and optimization by response surface methodology. Waste Manag 31(4), 636–643 (2011)

    Google Scholar 

  37. Cekmecelioglu, D., Uncu, O.N.: Kinetic modeling of enzymatic hydrolysis of pretreated kitchen wastes for enhancing bioethanol production. Waste Manag 33(3), 735–739 (2013)

    Google Scholar 

  38. Zhang, L., Jahng, D.: Long-term anaerobic digestion of food waste stabilized by trace elements. Waste Manag 32(8), 1509–1515 (2012)

    Google Scholar 

  39. Teeri, T.T.: Crystalline cellulose degradation: new insight into the function of cellobiohydrolases. Trends Biotechnol 15, 160–167 (1997)

    Google Scholar 

  40. Couto, S.R., Sanromán, M.A.: Application of solid-state fermentation to food industry: a review. J Food Eng 76(3), 291–302 (2006)

    Google Scholar 

  41. Dos Santos, T.C., Gomes, D.P.P., Bonomo, R.C.F., Franco, M.: Optimisation of solid state fermentation of potato peel for the production of cellulolytic enzymes. Food Chem 133, 1299–1304 (2012)

    Google Scholar 

  42. Ruiz, H.A., Rodriguez-Jasso, R.M., Rodriguez, R., Contreras-Esquivel, J.C., Aguilar, C.N.: Pectinase production from lemon peel pomace as support and carbon source in solid state fermentation column-tray bioreactor. Biochem Eng J 65, 90–95 (2012)

    Google Scholar 

  43. Shukla, J., Kar, R.: Potato peel as a solid state substrate for thermostable alpha amylase production by thermophilic Bacillus isolates. World J Microbiol Biotechnol 22(5), 417–422 (2006)

    Google Scholar 

  44. Thomas, L., Larroche, C., Pandey, A.: Current developments in solid-state fermentation. Biochem Eng J 81, 146–161 (2013)

    Google Scholar 

  45. Wang, Q., Wang, X., Wang, X., Ma, H.: Glucoamylase production from food waste by Aspergillus niger under submerged fermentation. Process Biochem 43(3), 280–286 (2008)

    Google Scholar 

  46. Pandey, A., Nigam, P., Soccol, C.R., Soccol, V.T., Singh, D., Mohan, R.: Advances in microbial amylases. Biotechnol Appl Biochem 31(2), 135–152 (2000)

    Google Scholar 

  47. Anto, H., Trivedi, U.B., Patel, K.C.: Glucoamylase production by solid-state fermentation using rice flake manufacturing waste products as substrate. Bioresour Technol 97(10), 1161–1166 (2006)

    Google Scholar 

  48. Elayaraja, S., Velvizhi, T., Maharani, V., Mayavu, P., Vijayalakshmi, S., Balasubramanian, T.: Thermostable alpha-amylase production by Bacillus firmus CAS 7 using potato peel as a substrate. Afr J Biotechnol 10(54), 11235–11238 (2011)

    Google Scholar 

  49. Murthy, P.S., Madhava Naidu, M., Srinivas, P.: Production of α-amylase under solid-state fermentation utilizing coffee waste. J Chem Technol Biotechnol 84(8), 1246–1249 (2009)

    Google Scholar 

  50. Umsza-Guez, M.A., Díaz, A.B., de Ory, I., Blandino, A., Gomes, E., Caro, I.: Xylanase production by Aspergillus awamori under solid state fermentation conditions on tomato pomace. Brazilian J Microbiol 42(4), 1585–1597 (2011)

    Google Scholar 

  51. Jamrath, T., Lindner, C., Popovic, M.K., Bajpai, R.: Production of amylases and proteases by Bacillus caldolyticus from food industry wastes. Food Technol Biotechnol 50(3), 355–361 (2012)

    Google Scholar 

  52. Melikoglu, M., Lin, C.S.K., Webb, C.: Stepwise optimisation of enzyme production in solid state fermentation of waste bread pieces. Food Bioprod Process 91(4), 638–646 (2013)

    Google Scholar 

  53. Kim, K.I., Kim, W.K., Seo, D.K., Yoo, I.S., Kim, E.K., Yoon, H.H.: Production of lactic acid from food wastes. Appl Biochem Biotechnol 107(105–108), 637–647 (2003)

    Google Scholar 

  54. Sakai, K., Taniguchi, M., Miura, S., Ohara, H., Matsumoto, T., Shirai, Y.: Making plastics from garbage: a novel process for poly-L-lactate production from municipal food waste. J Ind Ecol 7(3–4), 63–74 (2004)

    Google Scholar 

  55. Leung, C.C.J., Cheung, A.S.Y., Zhang, A.Y.Z., Lam, K.F., Lin, C.S.K.: Utilisation of waste bread for fermentative succinic acid production. Biochem Eng J 65, 10–15 (2012)

    Google Scholar 

  56. Kuhad, R.C., Gupta, R., Singh, A.: Microbial cellulases and their industrial applications. Enzyme Res 2011(1), 10 (2011)

    Google Scholar 

  57. Jørgensen, H., Kristensen, J.B., Felby, C.: Enzymatic conversion of lignocellulose into fermentable sugars: challenges and opportunities. Biofuels Bioproducts Biorefinery 1(2), 119–134 (2007)

    Google Scholar 

  58. Khandeparkar, R.D.S., Bhosle, N.B.: Isolation, purification and characterization of the xylanase produced by Arthrobacter sp. MTCC 5214 when grown in solid-state fermentation. Enzyme Microbial Technol 39(4), 732–742 (2006)

    Google Scholar 

  59. Uçkun Kiran, E., Akpinar, O., Bakir, U.: Improvement of enzymatic xylooligosaccharides production by the co-utilization of xylans from different origins. Food Bioprod Process 91(4), 565–574 (2013)

    Google Scholar 

  60. Effendi, A., Gerhauser, H., Bridgwater, A.V.: Production of renewable phenolic resins by thermochemical conversion of biomass: a review. Renew Sustain Energy Rev 12(8), 2092–2116 (2008)

    Google Scholar 

  61. Menon, V., Rao, M.: Trends in bioconversion of lignocellulose: biofuels, platform chemicals & biorefinery concept. Prog Energy Combust Sci 38(4), 522–550 (2012)

    Google Scholar 

  62. Bansal, N., Tewari, R., Soni, R., Soni, S.K.: Production of cellulases from Aspergillus niger NS-2 in solid state fermentation on agricultural and kitchen waste residues. Waste Manag 32(7), 1341–1346 (2012)

    Google Scholar 

  63. Saravanan, P., Muthuvelayudham, R., Viruthagiri, T.: Application of statistical design for the production of cellulase by Trichoderma reesei using mango peel. Enzyme Res 2012, 157643–157649 (2012)

    Google Scholar 

  64. Dhillon, G.S., Kaura, S., Brara, S.K., Vermac, M.: Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation. Ind Crops Prod 38(1), 6–13 (2012)

    Google Scholar 

  65. Krishna, C.: Production of bacterial cellulases by solid state bioprocessing of banana wastes. Bioresour Technol 69(3), 231–239 (1999)

    Google Scholar 

  66. Sun, H., Ge, X., Hao, Z., Peng, M.: Cellulase production by Trichoderma sp. on apple pomace under solid state fermentation. Afr J Biotechnol 9(2), 163–166 (2010)

    Google Scholar 

  67. Sun, H.Y., Li, J., Zhao, P., Peng, M.: Banana peel: a novel substrate for cellulase production under solid-state fermentation. Afr J Biotechnol 10(77), 17887–17890 (2011)

    Google Scholar 

  68. Díaz, A.B., de Ory, I., Caro, I., Blandino, A.: Enhance hydrolytic enzymes production by Aspergillus awamori on supplemented grape pomace. Food Bioprod Process 90(1), 72–78 (2012)

    Google Scholar 

  69. Botella, C., de Orya, I., Webbb, C., Cantero, D., Blandino, A.: Hydrolytic enzyme production by Aspergillus awamori on grape pomace. Biochem Eng J 26(2–3), 100–106 (2005)

    Google Scholar 

  70. Zilly, A., dos Santos Bazanella, G.C., Helm, C.V., Vaz Araújo, C.A., de Souza, C.G.M., Bracht, A., Peralta, R.M.: Solid-state bioconversion of passion fruit waste by white-rot fungi for production of oxidative and hydrolytic enzymes. Food Bioprocess Technol 5(5), 1573–1580 (2012)

    Google Scholar 

  71. Weil, J., Westgate, P., Kohlmann, K., Ladisch, M.R.: Cellulose pretreatments of lignocellulosic substrates. Enzyme Microbial Technol 16(11), 1002–1004 (1994)

    Google Scholar 

  72. Chandel, A.K., Chandrasekhar, G., Silva, M.B., Silvério Da Silva, S.: The realm of cellulases in biorefinery development. Crit Rev Biotechnol 32(3), 187–202 (2012)

    Google Scholar 

  73. Kashyap, D.R., Vohra, P.K., Chopra, S., Tewari, R.: Applications of pectinases in the commercial sector: a review. Bioresour Technol 77(3), 215–227 (2001)

    Google Scholar 

  74. Botella, C., Diaz, A., de Ory, I., Webb, C., Blandino, A.: Xylanase and pectinase production by Aspergillus awamori on grape pomace in solid state fermentation. Process Biochem 42(1), 98–101 (2007)

    Google Scholar 

  75. Pedrolli, D.B., Monteiro, A.C., Gomes, E., Carmona, E.C.: Pectin and pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol J 3, 9–18 (2009)

    Google Scholar 

  76. Afifi, M.M.: Effective technological pectinase and cellulase by Saccharomyces cerevisiae utilizing food wastes for citric acid production. Life Sci J 8(2), 405–413 (2011)

    Google Scholar 

  77. Garzon, C.G., Hours, R.A.: Citrus waste: an alternative substrate for pectinase production in solid-state culture. Bioresour Technol 39(1), 93–95 (1992)

    Google Scholar 

  78. Giese, E.C., Dekker, R.F.H., Barbosa, A.M.: Orange bagasse as substrate for the production of pectinase and laccase by Botryosphaeria rhodina MAMB-05 in submerged and solid state fermentation. BioResources 3(2), 335–345 (2008)

    Google Scholar 

  79. Berovic, M., Ostroversnik, H.: Production of Aspergillus niger pectolytic enzymes by solid state bioprocessing of apple pomace. J Biotechnol 53(1), 47–53 (1997)

    Google Scholar 

  80. Hours, R.A., Voget, C.E., Ertola, R.J.: Some factors affecting pectinase production from apple pomace in solid-state cultures. Biol Wastes 24(2), 147–157 (1988)

    Google Scholar 

  81. Martínez Sabajanes, M., Yáñez, R., Alonso, J.L., Parajó, J.C.: Pectic oligosaccharides production from orange peel waste by enzymatic hydrolysis. Int J Food Sci Technol 47(4), 747–754 (2012)

    Google Scholar 

  82. Pedrolli, D.B., Gomes, E., Monti, R., Carmona, E.C.: Studies on productivity and characterization of polygalacturonase from Aspergillus giganteus submerged culture using citrus pectin and orange waste. Appl Biochem Biotechnol 144(2), 191–200 (2008)

    Google Scholar 

  83. MacIel, M., Ottoni, C., Santos, C., Lima, N., Moreira, K., Souza-Motta, C.: Production of polygalacturonases by Aspergillus section Nigri strains in a fixed bed reactor. Molecules 18(2), 1660–1671 (2013)

    Google Scholar 

  84. Rivas-Cantu, R.C., Jones, K.D., Mills, P.L.: A citrus waste-based biorefinery as a source of renewable energy: technical advances and analysis of engineering challenges. Waste Manage Res 31(4), 413–420 (2013)

    Google Scholar 

  85. Ángel Siles López, J., Li, Q., Thompson, I.P.: Biorefinery of waste orange peel. Crit Rev Biotechnol 30(1), 63–69 (2010)

    Google Scholar 

  86. Lohrasbi, M., Pourbafrani, M., Niklasson, C., Taherzadeh, M.J.: Process design and economic analysis of a citrus waste biorefinery with biofuels and limonene as products. Bioresour Technol 101(19), 7382–7388 (2010)

    Google Scholar 

  87. Chutmanop, J., Chuichulcherm, S., Chisti, Y., Srinophakun, P.: Protease production by Aspergillus oryzae in solid-state fermentation using agroindustrial substrates. J Chem Technol Biotechnol 83(7), 1012–1018 (2008)

    Google Scholar 

  88. Gupta, R.K., Prasad, D., Sathesh, J., Naidu, R.B., Kamini, N.R., Palanivel, S., Gowthaman, M.K.: Scale-up of an alkaline protease from Bacillus pumilus MTCC 7514 utilizing fish meal as a sole source of nutrients. J Microbiol Biotechnol 22(9), 1230–1236 (2012)

    Google Scholar 

  89. Potumarthi, R., Ch, S., Jetty, A.: Alkaline protease production by submerged fermentation in stirred tank reactor using Bacillus licheniformis NCIM-2042: effect of aeration and agitation regimes. Biochem Eng J 34(2), 185–192 (2007)

    Google Scholar 

  90. Prakasham, R.S., SubbaRao, C., SreenivasRao, R., Sarma, P.N.: Alkaline protease production by an isolated Bacillus circulans under solid-state fermentation using agroindustrial waste: process parameters optimization. Biotechnol Prog 21(5), 1380–1388 (2005)

    Google Scholar 

  91. Khosravi-Darani, K., Falahatpishe, H.R., Jalali, M.: Alkaline protease production on date waste by an alkalophilic Bacillus sp. 2-5 isolated from soil. Afr J Biotechnol 7(10), 1536–1542 (2008)

    Google Scholar 

  92. Afify, M.M., Abd El-Ghany, T.M., Alawlaqi, M.M.: Microbial utilization of potato wastes for protease production and their using as biofertilizer. Aust J Basic Appl Sci 5(7), 308–315 (2011)

    Google Scholar 

  93. Jellouli, K., Bayoudh, A., Manni, L., Agrebi, R., Nasri, M.: Purification, biochemical and molecular characterization of a metalloprotease from Pseudomonas aeruginosa MN7 grown on shrimp wastes. Appl Microbiol Biotechnol 79(6), 989–999 (2008)

    Google Scholar 

  94. Souissi, N., Ellouz-Triki, Y., Bougatef, A., Blibech, M., Nasri, M.: Preparation and use of media for protease-producing bacterial strains based on by-products from cuttlefish (Sepia officinalis) and wastewaters from marine-products processing factories. Microbiol Res 163(4), 473–480 (2008)

    Google Scholar 

  95. Koutinas, A.A., Malbranque, F., Wang, R., Campbell, G.M., Webb, C.: Development of an oat-based biorefinery for the production of L(+)-lactic acid by rhizopus oryzae and various value-added coproducts. J Agric Food Chem 55(5), 1755–1761 (2007)

    Google Scholar 

  96. Contesini, F.J., Lopes, D.B., MacEdo, G.A., Nascimento, M.D.G., Carvalho, P.D.O.: Aspergillus sp. lipase: potential biocatalyst for industrial use. J Mol Catal B Enzym 67(3–4), 163–171 (2010)

    Google Scholar 

  97. Alkan, H., Baysal, Z., Uyar, F., Dogru, M.: Production of lipase by a newly isolated Bacillus coagulans under solid-state fermentation using melon wastes. Appl Biochem Biotechnol 136(2), 183–192 (2007)

    Google Scholar 

  98. Li, N.W., Zong, M.H., Wu, H.: Highly efficient transformation of waste oil to biodiesel by immobilized lipase from Penicillium expansum. Process Biochem 44(6), 685–688 (2009)

    Google Scholar 

  99. Vaseghi, Z., Najafpour, G.D., Mohseni, S., Mahjoub, S.: Production of active lipase by Rhizopus oryzae from sugarcane bagasse: solid state fermentation in a tray bioreactor. Int J Food Sci Technol 48(2), 283–289 (2013)

    Google Scholar 

  100. Saxena, R.K., Davidson, W.S., Sheoran, A., Giri, B.: Purification and characterization of an alkaline thermostable lipase from Aspergillus carneus. Process Biochem 39(2), 239–247 (2003)

    Google Scholar 

  101. Ramrakhiani, L., Chand, S.: Recent progress on phospholipases: different sources, assay methods, industrial potential and pathogenicity. Appl Biochem Biotechnol 164, 991–1022 (2011)

    Google Scholar 

  102. Gupta, N., Shai, V., Gupta, R.: Alkaline lipase from a novel strain Burkholderia multivorans: statistical medium optimization and production in a bioreactor. Process Biochem 42(2), 518–526 (2007)

    Google Scholar 

  103. Rehman, S., Bhatti, H.N., Bhatti, I.A., Asgher, M.: Optimization of process parameters for enhanced production of lipase by Penicillium notatum using agricultural wastes. Afr J Biotechnol 10(84), 19580–19589 (2011)

    Google Scholar 

  104. Colen, G., Junqueira, R.G., Moraes-Santos, T.: Isolation and screening of alkaline lipase-producing fungi from Brazilian savanna soil. World J Microbiol Biotechnol 22(8), 881–885 (2006)

    Google Scholar 

  105. Dominguez, A., Deive, F.J., Sanroman, M.A., Longo, M.A.: Biodegradation and utilization of waste cooking oil by Yarrowia lipolytica CECT 1240. Eur J Lipid Sci Technol 112(11), 1200–1208 (2010)

    Google Scholar 

  106. Papanikolaou, S., Dimou, A., Fakas, S., Diamantopoulou, P., Philippoussis, A., Galiotou-Panayotou, M., Aggelis, G.: Biotechnological conversion of waste cooking olive oil into lipid-rich biomass using Aspergillus and Penicillium strains. J Appl Microbiol 110(5), 1138–1150 (2011)

    Google Scholar 

  107. Moftah, O.A.S., Grbavčić, S., Žuža, M., Luković, N., Bezbradica, D., Knezevic-Jugovic, Z.: Adding value to the oil cake as a waste from oil processing industry: production of lipase and protease by Candida utilis in solid state fermentation. Appl Biochem Biotechnol 166(2), 348–364 (2012)

    Google Scholar 

  108. Edwinoliver, N.G., Thirunavukarasu, K., Naidu, R.B., Gowthaman, M.K., Nakajima Kambe, T., Kamini, N.R.: Scale up of a novel tri-substrate fermentation for enhanced production of Aspergillus niger lipase for tallow hydrolysis. Bioresour Technol 101, 6791–6796 (2010)

    Google Scholar 

  109. Esakkiraj, P., Usha, R., Palavesam, A., Immanuel, G.: Solid-state production of esterase using fish processing wastes by Bacillus altitudinis AP-MSU. Food Bioprod Process 90, 370–376 (2012)

    Google Scholar 

  110. Sellami, M., Kedachi, S., Frikha, F., Miled, N., Ben Rebah, F.: Optimization of marine waste based-growth media for microbial lipase production using mixture design methodology. Environ Technol 34(15), 2259–2266 (2013)

    Google Scholar 

  111. Toscano, L., Montero, G., Stoytcheva, M., Gochev, V., Cervantes, L., Campbell, H., Zlatev, R., Valdez, B., Pérez, C., Gil-Samaniego, M.: Lipase production through solid-state fermentation using agro-industrial residues as substrates and newly isolated fungal strains. Biotechnol Biotechnol Equip 27(5), 4074–4077 (2013)

    Google Scholar 

  112. Falony, G., Armas, J.C., Mendoza, J.C.D., Hernández, J.L.M.: Production of extracellular lipase from aspergillus Niger by solid-state fermentation. Food Technol. Biotechnol 44(2), 235–240 (2006)

    Google Scholar 

  113. Bajaj, A., Lohan, P., Jha, P.N., Mehrotra, R.: Biodiesel production through lipase catalyzed transesterification: an overview. J Mol Catal B Enzym 62(1), 9–14 (2010)

    Google Scholar 

  114. Dijkstra, A.J.: Enzymatic degumming. Eur J Lipid Sci Technol 112(11), 1178–1189 (2010)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the National Environment Agency (NEA, Singapore) for financial support of this research (Grant No: ETRP 1201 105).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uçkun Kiran, E., Trzcinski, A.P., Ng, W.J. et al. Enzyme Production from Food Wastes Using a Biorefinery Concept. Waste Biomass Valor 5, 903–917 (2014). https://doi.org/10.1007/s12649-014-9311-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9311-x

Keywords

Navigation