Skip to main content

Advertisement

Log in

Factors Affecting Bioethanol Production from Lignocellulosic Biomass (Calliandra calothyrsus)

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

India is in need of renewable fuels for transportation and power generation applications. Bio-ethanol, a second generation fuel is considered as one of the most important promising alternative fuel for both petrol and diesel engine applications. The molasses feedstock is the main source for ethanol production in India, but it is hardly sufficient to meet the current growing demand. Lignocellulosic biomass is an alternative, renewable and sustainable feedstock to meet the demand of ethanol. In the present study, experiments were carried out with the main objective of bio-ethanol production from Calliandra calothyrsus shrub, a potential lignocellulosic raw material for cellulose-to-bioethanol process. In view of this, C. calothyrsus biomass was pretreated with hydrothermal explosion using hot water, a method prior to hydrolysis process to produce fermentable sugars. Based on the experimental results, 2.67 and 1.72 g/L glucose was obtained with H2SO4 and HCl acid hydrolysis respectively for pretreated biomass. Also the present research work involves experimental investigations of bioethanol production from C. calothyrsus using batch fermentation. The results revealed that pH 4.5, temperature 30 °C and incubation period of 72 h were found to be favorable for producing maximum bioethanol yield. Further, study on hydrolysis was extended using enzyme, that resulted in 16.5 and 10.25 g/L glucose with and without pretreatment respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Wyman, C.E.: What is (and is not) vital to advancing cellulosic ethanol. Trends Biotechnol. 25, 153–157 (2007)

    Article  Google Scholar 

  2. Lynd, L.R., Laser, Mark S., Bransby, David, Dale, B.E., Davison, B., Hamilton, R., Himmel, M., Keller, M., McMillan, J.D., Sheehan, J., Wyman, C.E.: Nat. Biotechnol. 26(2), 169–172 (2008)

    Article  Google Scholar 

  3. Park, S.H., Yoon, S.H., Suh, H.K., Lee, C.S.: Effect of the temperature variation on properties of biodiesel and biodiesel- ethanol blend fuels. Oil Gas Sci. Technol. Rev. IFP 63, 737–745 (2008)

    Article  Google Scholar 

  4. Xingcai, L., Zhen, H., Wugao, Z., Degang, L.: The influence of ethanol additives on the performance and combustion characteristics of diesel engines. Combust. Sci. Technol. 176, 1309–1329 (2004)

    Article  Google Scholar 

  5. Chen, H., Shuai, S., Wang, J.: Study on combustion characteristics and PM emission of diesel engines using ester-ethanol-diesel blended fuels. Proc. Combust. Inst 31, 2981–2989 (2007)

    Article  Google Scholar 

  6. Li, De-gang, Huang Zhen, Lu, Xingcai, Yang Jian-guang: Physicochemical properties of ethanol diesel blend fuels on performance and emission of diesel engine. Renewable Energy 30(6), 967–976 (2005)

    Article  Google Scholar 

  7. Hansen, A.C., Zhang, Q., Lyne, P.W.L.: Ethanol-diesel fuel blends-a review. Bioresour. Technol. 96, 277–285 (2005)

    Article  Google Scholar 

  8. Corkwell, K.C., Jackson, M.M., Daly, D.T.: Review of exhaust emissions of compression ignition engines operating on E diesel fuel blends, SAE International Paper no.: 2003-01-3283 (2003)

  9. Banapurmath, N.R., Tewari, P.G., Yaliwal, V.S.: Fuel efficiency—improving fuel efficiency of compression ignition engines fuelled with vegetable oil, Nova Science Publishers, Inc., ISBN: 978-1-61122-194-7: 2–36 (2010)

  10. Yaliwal, V.S., Nataraja, K. M., Banapurmath, N. R., Tewari P.G.: Honge oil methyl ester and producer gas-fuelled dual-fuel engine operated with varying compression ratios. International Journal of Sustainable Engineering, Article in press. doi:10.1080/19397038.2013.837108 (2013)

  11. Mabee, W. E., Saddler, J. N.: Ethanol from Lignocellulosics: Policy options to support bioethanol production, IEA Task 39, Forest Products Biotechnology, University of British Columbia. Report T39-P2, 1–16 (2005)

  12. Mitchell, D.: A note of rising food prices, Policy research working paper 4682. Development Prospects Group, The World Bank, Washington D.C., USA, 1–21 (2008)

  13. Wheals, A.E., Bassoc, L.C., Alves, D.M.G., Amorimd, H.V.: Fuel ethanol after 25 years. Trends Biotechnol. 17(12), 482–487 (1999)

    Article  Google Scholar 

  14. Grad, P.: Biofuelling Brazil—an overview of the bioethanol success story in Brazil. Biofuels 7(3), 56–59 (2006)

    Google Scholar 

  15. Dien, B.S., Li, X.L., Iten, L.B., Jordan, D.B., Nichols, N.N., Bryan, O., Cotta, M.A.: Enzymatic saccharification of hot-water pretreated corn fiber for production of mono-saccharides. Enzyme Microb. Technol. 39(5), 1137–1144 (2006)

    Article  Google Scholar 

  16. Laser, M., Schulman, D., Allen, S.G., Lichwa, J., Antal, M.J., Lynd, L.R.: A comparison of liquid hot water and steam pretreatments of sugar cane bagase for conversion to ethanol. Bioresour. Technol. 81, 33–44 (2002)

    Article  Google Scholar 

  17. Xu, J., Thomsen, M.H., Thomsen, A.B.: Pretreatment on corn stover with low concentration of formic acid. J. Microbiol. Biotechnol. 19(8), 845–850 (2009)

    Google Scholar 

  18. Muralidharan, M., Mathew, P., Thariyan Sumit Roy, Subrahmanyam, J. P., Subbarao P. M. V.: Use of Pongamia Biodiesel in CI Engines for Rural Application. 3rd International Conference on Automotive and Fuel Technology, Society of Automotive Engineer Paper No.: 2004-28-0030, 1–8 (2004)

  19. Bjerre, A.B., Olesen, A.B., Fernqvist, T., Ploger, A., Schmidt, A.S.: Pretreatment of wheat straw using combined wet oxidation and alkaline hydrolysis resulting in convertible cellulose and hemicellulose. Biotechnol. Bioenergy 49(5), 568–577 (1996)

    Article  Google Scholar 

  20. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y.Y., Holtzapple, M., Ladisch, M.: Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresour. Technol. 96(6), 673–686 (2005)

    Article  Google Scholar 

  21. Perez, J.A., Ballesteros, I., Ballesteros, M., Sáez, F., Negro, M.J., Manzanares, P.: Optimizing liquid hot water pretreatment conditions to enhance sugar recovery from wheat straw for fuel-ethanol production. Fuel 87, 3640–3647 (2008)

    Article  Google Scholar 

  22. Nigam, P.S., Gupta, N., Anthwal, A.: Pre-treatment of agro-industrial residues. In: Nigam, P.S., Pandey, A. (eds.) Biotechnology foragro-industrial residues utilization, 1st edn, pp. 13–33. Springer publications, Netherlands (2009)

    Chapter  Google Scholar 

  23. Zhang, Y.H.: Reviving the carbohydrate economy via multi-product lignocellulose biorefineries. Ind. Microbiol. Biotechnol. 35, 367–375 (2008)

    Article  Google Scholar 

  24. Hendriks, A.T.W.M., Zeeman, G.: Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresour. Technol. 100(1), 10–18 (2009)

    Article  Google Scholar 

  25. Kumar, R., Singh, S., Singh, O.V.: Bioconversion of lignocellulosic biomass: biochemical and molecular perspectives. Ind. Microbiol. Biotechnol. 35, 377–391 (2008)

    Article  Google Scholar 

  26. Taherzadeh, M.J., Karimi, K.: Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. Int. J. Mol. Sci. 9, 1621–1651 (2008)

    Article  Google Scholar 

  27. Yang, B., Wyman, C.E.: Pretreatment: the key to unlocking low-cost cellulosic ethanol. Biofuels Bioprod. Biorefin. 2(1), 26–40 (2008)

    Article  Google Scholar 

  28. Sun, F.B., Cheng, H.Z.: Evaluation of enzymatic hydrolysis of wheat straw pretreated by atmospheric glycerol autocatalysis. J. Chem. Technol. Biotechnol. 82, 1039–1044 (2007)

    Article  Google Scholar 

  29. Agbor, V.B., Cicek, N., Sparling, R., Berlin, A., Levin, D.B.: Biomass pretreatment: fundamentals toward application. Biotechnol. Adv. 29, 675–685 (2011)

    Article  Google Scholar 

  30. Laureano-Perez, L., Teymouri, F., Alizadeh, H., Dale, B.E.: Understanding factors that limit enzymatic hydrolysis of biomass. Appl. Biochem. Biotechnol. 121(124), 1081–1099 (2005)

    Article  Google Scholar 

  31. Balan, V., Bals, B., Chundawat, S.P., Marshall, D., Dale, B.E.: Lignocellulosic biomass pretreatment using AFEX. Methods Mol. Biol. 581, 61–77 (2009). doi:10.1007/978-1-60761-214-8_5

    Article  Google Scholar 

  32. Sarkar, N., Ghosh, S.K., Bannerjee, S., Aikat, K.: Bioethanol production from agricultural wastes: an overview. Renewable Energy 37(1), 19–27 (2012)

    Article  Google Scholar 

  33. Mosier, N.S., Ladisch, C.M., Ladich, M.R.: Characterization of acid catalytic domains for cellulose hydrolysis and glucose degradation. Biotechnol. Bioeng. 6(79), 610–618 (2002)

    Article  Google Scholar 

  34. Kim, Y., Mosier, N.S., Ladisch, M.R.: Enzymatic digestion of liquid hot water pretreated hybrid poplar. Biotechnol. Prog. 25(2), 340–348 (2009)

    Article  Google Scholar 

  35. Yu, G., Yano, S., Inoue, H., Inoue, S., Endo, T., Sawayama, S.: Pretreatment of rice straw by a hot-compressed water process for enzymatic hydrolysis. Appl. Biochem. Biotechnol. 160(2), 539–551 (2010)

    Article  Google Scholar 

  36. Sukumaran, R.K., Surender, V.J., Sindhu, R., Binod, P., Janu, K.U., Sajna, K.V., Rajasree, K.P., Pandey, A.: Lignocellulosic ethanol in India-prospects, challenges and feedstock availability. Bioresour. Technol. 101, 4826–4833 (2010)

    Article  Google Scholar 

  37. Ravindranath, N.H., Somashekar, H.I., Nagaraja, M.S., Sudha, P., Sangeetha, G., Bhattacharya, S.C., Abdul Salam, P.: Assessment of sustainable nonplantation biomass resources potential for energy in India. Biomass Bioenergy 29(3), 178–190 (2005)

    Article  Google Scholar 

  38. Goering, H. K., Van Soest, P.J.: Forage fiber analysis (apparatus, reagents, procedures and some applications). USDA Agricultural Handbook No.: 379 (1970)

  39. Romero, I., Ruiz, E., Castro, E., Maya, M.: Acid hydrolysis of olive tree biomass. Chem. Eng. Res. Design 88, 633–671 (2010)

    Article  Google Scholar 

  40. Larsson, S., Palmqvist, E., Hahn-Ha¨gerdal, B., Tengborg, C., Stenberg, K., Zacchi, G., Nilvebrant, N.: The generation of fermentation inhibitors during dilute acid hydrolysis of softwood. Enzyme Microb. Technol. 24, 151–159 (1999)

    Article  Google Scholar 

  41. Lenihan, P., Orozco, A., O’nill, E., Ahmad, M.N.M., Rooney, D.W., Walker, G.M.: Dilute acid hydrolysis of lignocellulosic biomass. J. Chem. Eng. 156, 395–410 (2010)

    Article  Google Scholar 

  42. Reed, G.: Production of fermentation alcohol as a fuel source. In: Prescott & Dunn’s Industrial Microbiology, fifth ed. Reprinted by CBS Publishers, New Delhi, 835–860 (2002)

  43. Pramanik, K.: Parametric studies on batch alcohol fermentation using saccharomyces yeast extracted from toddy. J. Chin. Inst. Chem. Eng. 34(4), 487–492 (2003)

    Google Scholar 

  44. Olaniran, A.O., Maharaj, Y.R., Pillay, B.: Effects of fermentation temperature on the composition of beer volatile compounds, organoleptic quality and spent yeast density. Electron. J. Biotechnol. 14(2), 5 (2011)

    Article  Google Scholar 

  45. Kabel, M.A., Bos, G., Zeevalking, J., Voragen, A.G.J., Schols, H.A.: Effect of pretreatment severity on xylan solubility and enzymatic breakdown of the remaining cellulose from wheat straw. Bioresour. Technol. 98, 2034–2042 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. Y. Adaganti or V. S. Yaliwal.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Adaganti, S.Y., Yaliwal, V.S., Kulkarni, B.M. et al. Factors Affecting Bioethanol Production from Lignocellulosic Biomass (Calliandra calothyrsus). Waste Biomass Valor 5, 963–971 (2014). https://doi.org/10.1007/s12649-014-9305-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9305-8

Keywords

Navigation