Skip to main content

Advertisement

Log in

Evaluation of Environmental Compatibility for a Biomass Plant

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The aim of this work was to determine the local compatibility of a biomass plant to be constructed in a small town located in Piedmont, northern Italy, to produce both electricity and heat. In order to study both the local critical impacts (on air quality) and the overall environmental benefits (decrease of GHG generation), we performed an evaluation of the emissive flow modification for the hypothesis of activating the biomass plant in the municipal area, by considering introduced and eliminated pollutant loads. The evaluation was conducted using the tools of mass and energy balances, evaluating the pollution fluxes with an external costs methodology and pollutant dispersion models. These conclusions, numerically defined for the specific situation studied, can be considered to be fairly representative as a methodological approach to studying the effects of biomass energy plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Appels, L., Dewil, R.: Biomass valorization to energy and value added chemicals: the future of chemical industry. Resour. Conserv. Recycl. 59, 1–3 (2012)

    Article  Google Scholar 

  2. Boman, U.R., Turnbull, J.H.: Integrated biomass energy systems and emissions of carbon dioxide. Biomass Bioenergy 13, 333–343 (1997)

    Article  Google Scholar 

  3. Dornburg, V., Van Dam, J., Faaij, A.: Estimating GHG emission mitigation supply curves of large-scale biomass use an a country level. Biomass Bioenergy 31, 46–65 (2007)

    Article  Google Scholar 

  4. Laurijssena, J., Marsidi, M., Westenbroek, A., Worrell, E., Faaij, A.: Paper and biomass for energy? The impact of paper recycling on energy and CO2 emissions. Resour. Conserv. Recycl. 54, 1208–1218 (2010)

    Article  Google Scholar 

  5. Albertazzi, S., Basile, F., Brandin, J., Einvall, J., Hulteberg, C., Fornasari, G., Rosetti, V., Sanati, M., Trifirò, F., Vaccari, A.: The technical feasibility of biomass gasification for hydrogen production. Catal. Today 106, 297–300 (2005)

    Article  Google Scholar 

  6. Amutio, M., Lopez, G., Artetxe, M., Elordi, G., Olazar, M., Bilbao, J.: Influence of temperature on biomass pyrolysis in a conical spouted bed reactor. Resour. Conserv. Recycl. 59, 23–31 (2012)

    Article  Google Scholar 

  7. Bridgwater, A.V.: The technical and economic feasibility of biomass gasification for power generation. Fuel 74, 631–653 (2005)

    Article  Google Scholar 

  8. Caputo, A.C., Palumbo, M., Pelagagge, P.M., Scacchia, F.: Economics of biomass energy utilization in combustion and gasification plants: effects of logistic variables. Biomass Bioenergy 28, 35–51 (2005)

    Article  Google Scholar 

  9. Hanaoka, T., Inove, S., Uno, S., Ogi, T., Minowa, T.: Effect of woody biomass components on air–steam gasification. Biomass Bioenergy 28, 69–76 (2005)

    Article  Google Scholar 

  10. Hohenstein, W.G., Wright, L.L.: Biomass energy production in the United States: an overview. Biomass Bioenergy 6, 161–173 (1994)

    Article  Google Scholar 

  11. Hustad, J., Skreiberg, Ø., Sonju, O.: Biomass combustion research and utilization in IEA countries. Biomass Bioenergy 9, 235–255 (1995)

    Article  Google Scholar 

  12. Panepinto, D., Genon, G., Brizio, E., Russolillo, D.: Production of green energy from co-digestion: perspectives for the Province of Cuneo, energetic balance and environmental sustainability. Clean Technol. Environ. Policy (2013). doi:10.1007/s10098-012-0568-0

    Google Scholar 

  13. Van Den Broek, R., Faaij, A., Van Wick, A.: Biomass combustion for power generation. Biomass Bioenergy 11, 271–281 (1996)

    Article  Google Scholar 

  14. Jeguirim, M., Chouchene, A., Reguillon, A.F., Trouve, G., Le Buzit, G.: A new valorization strategy of olive oil wastewater: impregnation on sawdust and combustion. Resour. Conserv. Recycl. 59, 4–8 (2012)

    Article  Google Scholar 

  15. McIlveen-Wright, D.R., Huang, Y., Rezvani, S., Mondol, J.D., Redpath, D., Anderson, M., Hewitt, N.J., Williams, B.C.: A techno-economic assessment of the reduction of carbon dioxide emissions through the use of biomass co-combustion. Fuel 90, 11–18 (2011)

    Article  Google Scholar 

  16. Schlamadinger, B., Spitzer, J., Kohlmaier, G.H., Lüdeke, M.: Carbon balance of bioenergy from logging residues. Biomass Bioenergy 8, 221–234 (1995)

    Article  Google Scholar 

  17. IEA Bioenergy: The Role of Bioenergy in Greenhouse Gas Mitigation, Position paper, IES Bioenergy, New Zealand (1998)

  18. Maniatis K.: Progress in Biomass Gasification: An Overview, (2002)

  19. Panepinto, D., Genon, G.: Biomass thermal treatment: energy recovery, environmental compatibility and determination of external costs. Waste Biomass Valoriz. 3, 197–206 (2012)

    Article  Google Scholar 

  20. Genon, G., Torchio, M.F., Poggio, A., Poggio, M.: Energy and environmental assessment of small district heating systems: global and local effects in two case-studies. Energy Convers. Manag. 50, 522–529 (2009)

    Article  Google Scholar 

  21. European Commission edited by Bickel Peter and Friedrich Rainer: ExternE—Externalities of Energy Methodology 2005 Update, Institut für Energiewirtschaft und Rationelle Energieanwendung—IER Universität Stuttgart, Germany, ISBN 92-79-00423-9 (2005)

  22. US Environmental Protection Agency: User’s Guide for the Industrial Source Complex (ISC3) dispersion models, vol. I—user instructions. http://www.epa.gov/scram001/userg/regmod/isc3v1.pdf (1995). Accessed 20 April 2013

  23. D. Lgs: n. 152 “Regulation in Environmental Field”, published on Gazzetta Ufficiale n. 88, supplemento ordinario n. 96 (in Italian) 3 April (2006)

  24. Fracastoro, G.V., Barbero, A.M., Baccon, F. (Politecnico di Torino): Requisiti tecnici per impianti a cippato superiori a 350 kW. http://www.fire-italia.it/forum/pellet/all_oltre_350.pdf (2004). Accessed 15 July 2009

  25. Panepinto, D., Genon, G.: Environmental balance study for the construction of a biomass plant in a small town in Piedmont (Northern Italy). WIT Trans. Ecol. Environ. 143, 279–290 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Panepinto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Panepinto, D., Viggiano, F. & Genon, G. Evaluation of Environmental Compatibility for a Biomass Plant. Waste Biomass Valor 5, 759–772 (2014). https://doi.org/10.1007/s12649-014-9300-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-014-9300-0

Keywords

Navigation