Skip to main content

Advertisement

Log in

Valorization of Agricultural Residues for Compactin Production by Aspergillus terreus MTCC 279 in Mixed Substrate Solid State Fermentation

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The present study was aimed to enhance the production of compactin by Aspergillus terreus MTCC 279 in mixed substrate solid state fermentation (SSF) using various solid substrates. Twenty solid substrates including agricultural residues and other solid substrates were tested for the compactin and lovastatin production by A. terreus. Among the twenty substrates tested, the three substrates which gave maximum compactin production was taken for further optimization in mixed substrate solid state fermentation in various combinations using response surface methodology. Green peas, millet and ragi were found to be suitable substrates which produced maximum compactin production in SSF. The combinations of the substrates with 1.5 g of green peas, 1.5 g of millet and 1.5 g of ragi gave maximum production of 389.34 mg/gds compactin and 1,467.12 mg/gds lovastatin. Response surface methodology was used to determine the optimal combination of each substrate. To the best of our knowledge this is the first report on enhancing compactin production in mixed substrate solid state fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Manzoni, M., Rollini, M.: Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol. 58, 555–564 (2002)

    Article  Google Scholar 

  2. Endo, A.: Compactin (ML-236 B) and related compounds as potential cholesterol lowering agents that HMG-CoA reductase. J. Med. Chem. 28, 401–405 (1985)

    Article  Google Scholar 

  3. Endo, A., Monacolin, K.: A new hypocholesterolemic agent produced by a Monascus species. J. Antibiot. 32, 852–854 (1979)

    Article  Google Scholar 

  4. Brown, A.G., Smale, T.C., King, T.J., Hasenkamp, R., Thompson, R.H.: Crystal and molecular structure of compactin, a new antifungal metabolite from Penicillium brevicompactum. J. Chem. Soc. Perkin. I(11), 1165–1170 (1976)

    Article  Google Scholar 

  5. Endo, A., Kuroda, M., Tanzawa, K.: Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett. 72, 323–326 (1976)

    Article  Google Scholar 

  6. Endo, A., Kuroda, M., Tsujita, Y.: ML-236A, ML-236B and ML-236C, New inhibitors of cholesterogenesis produced by Penicillium citrinum. J. Antibiot. 29, 1346–1348 (1976)

    Article  Google Scholar 

  7. Kovanen, P.T., Bilheimer, D.W., Goldstein, J.L., Jaramillo, J.J., Brown, M.S.: Regulatory role for hepatic low density lipoprotein receptors in vivo in the dog. Proc. Natl. Acad. Sci. 78, 1194–1198 (1981)

    Article  Google Scholar 

  8. Bilheimer, D.W., Grundy, S.M., Brown, M.S., Goldstein, J.L.: Mevinolin and colestipol stimulate receptor-mediated clearance of low density lipoprotein from plasma in familial hypercholesterolemia heterozygotes. Proc. Natl. Acad. Sci. 80, 4124–4128 (1983)

    Article  Google Scholar 

  9. Serizawa, N., Nakagawa, K., Hamano, K., Tsujita, Y., Terahara, A., Kuwano, H.: Microbial hydroxylation of ML-236B (compactin) and monacolin K. J. Antibiot. 36, 604–607 (1983)

    Article  Google Scholar 

  10. Bhargav, S., Panda, B.P., Ali, M., Javed, S.: Solid-state fermentation: an overview. Chem. Biochem. Eng. 22(1), 49–70 (2008)

    Google Scholar 

  11. Calam, C.T.: Secondary metabolism as an expression of microbial growth and development. Folia Microbiol. 24, 276–285 (1979)

    Article  Google Scholar 

  12. Aravindan, R., Viruthagiri, T.: Sequential optimization of culture medium for extracellular lipase production by Bacillus spharicus using statistical methods. J. Chem. Technol. Biotechnol. 82, 460–470 (2007)

    Article  Google Scholar 

  13. Aravindan, R., Viruthagiri, T.: Statistical optimization of process parameters for lipase production by Bacillus brevis. Food Bioprocess Tech. 5(1), 310–322 (2012)

    Article  Google Scholar 

  14. Kannan, N., Aravindan, R.: Evaluation and optimization of food-grade tannin acyl hydrolase production by a probiotic Lactobacillus plantarum strain in submerged and solid state fermentation. Food Bioprod. Process. 90(4), 780–792 (2012)

    Article  Google Scholar 

  15. Arrivukkarasan, S., Aravindan, R., Muthusivaramapandian, M., Khazi, M.B., Viruthagiri, T.: Sequential optimization and kinetic modeling of L-asparaginase production by Pectobacterium carotovorum in submerged fermentation. Asia-Pac. J. Chem. Eng. 5(5), 743–755 (2010)

    Google Scholar 

  16. Subhagar, S., Aravindan, R., Viruthagiri, T.: Response surface optimization of mixed substrate solid state fermentation for the production of lovastatin by Monascus purpureus. Eng. Life Sci. 9, 303–310 (2009)

    Article  Google Scholar 

  17. Devanesan, G., Viruthagiri, T., Aravindan, R.: Response surface optimization for the transesterification of karanja oil using immobilized whole cells of Rhizopus oryzae in n-hexane system. Biomass Conv. Bioref. 2(1), 11–20 (2012)

    Article  Google Scholar 

  18. Myers, R.H., Montgomery, D.C.: Response Surface Methodology: Process and Product Optimization Using Design Experiments, pp. 74–89. Wiley, New York (1995)

    Google Scholar 

  19. Ahamad, M.Z., Panda, B.P., Javed, S., Ali, M.: Production of mevastatin by solid state fermentation using wheat bran as substrate. Res. J. Microbiol. 1(5), 443–447 (2006)

    Article  Google Scholar 

  20. Valera, H.R., Gomes, J., Lakshmi, S., Gururaja, R., Suryanarayan, S., Kumar, D.: Lovastatin production by solid state fermentation using Aspergillus flavipes. Enzyme Microb. Tech. 37, 521–526 (2005)

    Article  Google Scholar 

  21. Brakhage, A.A.: Molecular Biotechnology of Fungal Beta-Lactam Antibiotics and Related Peptide Synthetases. Springer, Berlin (2004)

    Book  Google Scholar 

  22. Vidya, C., Rao, D.B.: A Text Book of Nutrition. Discovery Publishing House, New Delhi (2006)

    Google Scholar 

  23. Bizukojc, M., Pawlowska, B., Ledakowicz, S.: Supplementation of the cultivation media with B-group vitamins enhances lovastatin biosynthesis by Aspergillus terreus. J. Biotechnol. 127, 258–268 (2007)

    Article  Google Scholar 

  24. Shaligram, N.S., Singh, S.K., Singhal, R.S., Szakacs, G., Pandey, V.: Compactin production in solid-state fermentation using orthogonal array method by Penicillium brevicompactum. Biochem. Eng. 41, 295–300 (2008)

    Article  Google Scholar 

  25. Shaligram, N.S., Singh, S.K., Singhal, R.S., Pandey, A., Szakacs, G.: Compactin production studies using Penicillium brevicompactum under solid-state fermentation conditions. Appl. Biochem. Biotechnol. 159, 505–520 (2009)

    Article  Google Scholar 

  26. Shaligram, N.S., Singh, S.K., Singhal, R.S., Szakacs, G., Pandey, A.: Effect of precultural and nutritional parameters on compactin production by solid-state fermentation. J. Microbiol. Biotechnol. 19(7), 690–697 (2009)

    Google Scholar 

  27. Chakravarti, R., Sahai, V.: A chemically-defined medium for production of compactin by Penicillium citrinum. Biotechnol. Lett. 24, 527–530 (2002)

    Article  Google Scholar 

  28. Konya, A., Jekkel, A., Suto, J., Salat, J.: Optimization of compactin fermentation. J. Ind. Microbiol. Biotechnol. 20, 150–152 (1998)

    Article  Google Scholar 

  29. Chakravarti, R., Sahai, V.: Optimization of compactin production in chemically defined production medium by Penicillium citrinum using statistical methods. Process Biochem. 38, 481–486 (2002)

    Article  Google Scholar 

  30. Wang, Y.P., Chen, Y.C., Chang, W., Lin, C.L.: Mutant strain of Penicillium citrinum and use thereof for preparation of compactin. US Patent 6,323,021 (2001)

  31. Wei, P.L., Xu, Z.N., Cen, P.L.: Lovastatin production by Aspergillus terreus in solid-state fermentation. J. Zhejiang Univ. Sci. A. 8(9), 1521–1526 (2007)

    Article  Google Scholar 

  32. Ahmad, A., Panda, B.P., Mujeeb, M.: Screening of nutrient parameters for mevastatin production by Penicillium citrinum MTCC 1256 under submerged fermentation using the Plackett–Burman design. J. Pharm. Bioallied Sci. 2, 44–46 (2010)

    Article  Google Scholar 

  33. Papagianni, M., Mattey, M., Kristiansen, B.: Morphology and citric acid production of Aspergillus niger PM1. Biotechnol. Lett. 9, 929–934 (1994)

    Article  Google Scholar 

  34. Hosobuchi, M., Fukui, F., Tatsukawa, H., Suzuki, T., Yoshikawa, H.: Fuzzy control in microbial production of ML-236B, a precursor of pravastatin sodium. J. Ferment. Bioeng. 76, 482–486 (1993)

    Article  Google Scholar 

  35. Hosobuchi, M., Ogawa, K., Yoshikawa, H.: Morphology study in production of ML-236B, a precursor of pravastatin sodium, by Penicillium citrinum. J. Ferment. Bioeng. 76, 470–475 (1993)

    Article  Google Scholar 

  36. Gerson, D.F., Xiao, X.: Process for the production of lovastatin using Coniothyrium fuckelii. US Patent 5,409,820 (1995)

  37. Chung, K.J., Lee, J.K., Park, J.W., Seo, D.J., Lee, S.C.: Method for producing pravastatin precursor, ML-236B. US Patent 6,204,032 (2001)

  38. Gallo, M., Katz, E.: Regulation of secondary metabolite biosynthesis: catabolite repression of phenoxazine synthase and actinomycin formation by glucose. J. Bacteriol. 109, 659–667 (1972)

    Google Scholar 

  39. Demain, A.L., Kennel, Y.M., Aharonowitz, Y.: Carbon catabolic regulation of secondary metabolism. Microbial technology: current status, future prospects. Symp. Soc. Gen. Microbiol. 29, 168–185 (1979)

    Google Scholar 

  40. Martin, J.F., Revilla, G., Zanca, D.M., Lopez-Nieto, M.J.: Carbon catabolite regulation of penicillin and cephalosporin biosynthesis. In: Umezawa, H. (eds.) Proceedings of symposium trends in antibiotic research. pp 258–268. Japan Antibiotic Research Association, Tokyo (1982)

  41. Bazaraa, W.A., Hamdy, M.K., Toledo, R.: Bioreactor for continuous synthesis of compactin by Penicillium cyclopium. J. Ind. Microbiol. Biotechnol. 2, 192–202 (1998)

    Article  Google Scholar 

  42. Banos, J.G., Tomasini, A., Szakács, G., Barrios-González, J.: High lovastatin production by Aspergillus terreus in solid-state fermentation on polyurethane foam: an artificial inert support. J. Biosci. Bioeng. 108(2), 105–110 (2009)

    Article  Google Scholar 

  43. Panda, B.P., Javed, S., Ali, M.: Statistical analysis and validation of process parameters influencing lovastatin production by Monascus purpureus MTCC 369 under solid-state fermentation. Biotechnol. Bioproc. Eng. 14, 123–127 (2009)

    Article  Google Scholar 

  44. Subhagar, S., Aravindan, R., Viruthagiri, T.: Statistical and optimization of anti-cholesterolemic drug lovastatin production by the red mould M. purpureus. Food Bioprod. Process. 88, 266–276 (2010)

    Article  Google Scholar 

  45. Baba, S., Abe, Y., Suzuki, T., Ono, C., Iwamoto, K., Nihira, T., Hosobuchi, M.: Improvement of compactin (ML-236B) production by genetic engineering in compactin high-producing Penicillium citrinum. Appl. Microbiol. Biotechnol. 83, 697–704 (2009)

    Article  Google Scholar 

  46. Baba, S., Nihira, T., Hosobuchi, M.: Identification of the specific sequence recognized by Penicillium citrinum MlcR, a GAL4-type transcriptional activator of ML-236B (compactin) biosynthetic genes. Fungal Genet. Biol. 45, 1277–1283 (2008)

    Article  Google Scholar 

  47. Abe, Y., Suzuki, T., Ono, C., Iwamoto, K., Hosobuchi, M., Yoshikawa, H.: Molecular cloning and characterization of an ML-236B (compactin) biosynthetic gene cluster in Penicillium citrinum. Mol. Genet. Genomics 267, 636–646 (2002)

    Article  Google Scholar 

  48. Manzoni, M., Rollini, M., Bergomi, S., Cavazzoni, V.: Production and purification of statins from Aspergillus terreus strains. Biotechnol. Tech. 12(7), 529–532 (1998)

    Article  Google Scholar 

  49. Manzoni, M., Rollini, M.: Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl. Microbiol. Biotechnol. 58(5), 555–564 (2002)

    Article  Google Scholar 

  50. Plackett, R.L., Burman, J.P.: The design of optimum multifactorial experiments. Biometrika 33, 305–325 (1946)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aravindan Rajendran.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Syed, M.B., Rajendran, A., Seraman, S. et al. Valorization of Agricultural Residues for Compactin Production by Aspergillus terreus MTCC 279 in Mixed Substrate Solid State Fermentation. Waste Biomass Valor 5, 715–724 (2014). https://doi.org/10.1007/s12649-013-9276-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-013-9276-1

Keywords

Navigation