Skip to main content

Advertisement

Log in

Improving the Energy Balance of an Integrated Microalgal Wastewater Treatment Process

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The inclusion of a microalgal system in a wastewater treatment flowsheet for residual nutrient uptake can be justified by processing the waste biomass for energy recovery. Low energy harvesting technologies and pre-treatment of the algal biomass are required to improve the overall energy balance of this integrated system. Scenedesmus obliquus and Chlorella sp., achieving nitrogen and phosphorus removal rates higher than 90 %, were used to compare cells recovery efficiency and energy requirements of two energy efficient harvesting systems: dissolved air flotation (DAF) and ballasted dissolved air flotation (BDAF). In addition, thermal hydrolysis was used as a pre-treatment to improve biogas production during anaerobic digestion. The energy required for both systems was then considered to estimate the daily energy demand and efficiency of two microalgae wastewater treatment plants with a capacity of 25,000 and 230,000 p.e., respectively. Overall, a high algal cells recovery efficiency (99 %) was achieved using low energy demand (0.04 kWh m−3 for BDAF) and a coagulant dose reduction between 42 and 50 % depending on the algal strain. Anaerobic digestion of pre-treated S. obliquus showed a threefold increase in methane yield. Compared to a traditional activated sludge process, the additional tertiary microalgal treatment generates an integrated process potentially able to achieve up to 76 % energy efficiency.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Martínez, M.E., Sánchez, S., Jiménez, J.M., El Yousfi, E., Munoz, L.: Nitrogen and phosphorus removal from urban wastewater by the microalga Scenedesmus obliquus. Bioresour. Technol. 73, 263–272 (2000)

    Article  Google Scholar 

  2. Xin, L., Hong-Ying, H., Jia, Y.: Lipid accumulation and nutrient removal properties of a newly isolated freshwater microalga, Scenedesmus sp. LX1, growing in secondary effluent. New Biotechnol. 27, 59–63 (2010)

    Article  Google Scholar 

  3. Ruiz-Marin, A., Mendoza-Espinosa, L.G., Stephenson, T.: Growth and nutrient removal in free and immobilized green algae in batch and semi-continuous cultures treating real wastewater. Bioresour. Technol. 101, 58–64 (2010)

    Article  Google Scholar 

  4. Christenson, L., Sims, R.: Production and harvesting of microalgae for wastewater treatment, biofuels, and bioproducts. Biotechnol. Adv. 29, 686–702 (2011)

    Article  Google Scholar 

  5. Demirbas, A.: Use of algae as biofuel sources. Energy Convers. Manag. 51, 2738–2749 (2010)

    Article  Google Scholar 

  6. Pittman, J.K., Dean, A.P., Osundeko, O.: The potential of sustainable algal biofuel production using wastewater resources. Bioresour. Technol. 102, 17–25 (2011)

    Article  Google Scholar 

  7. Min, M., Wang, L., Li, Y., Mohr, M.J., Hu, B., Zhou, W., Chen, P., Ruan, R.: Cultivating Chlorella sp. in pilot-scale photobioreactor using centrate wastewater for microalgae biomass production and wastewater nutrient removal. Appl. Biochem. Biotechnol. 165, 123–137 (2011)

    Article  Google Scholar 

  8. Tredici, M.R.: Mass production of microalgae: photobioreactors. In: Richmond, A. (ed.) Handbook of Microalgal Culture: Biotechnology and Applied Phycology, pp. 178–214. Blackwell Science, Iowa (2007)

    Google Scholar 

  9. Cromar, N.J., Fallowfield, H.J.: Effect of nutrient loading and retention time on performance of high rate algal ponds. J. Appl. Phycol. 9, 301–309 (1997)

    Article  Google Scholar 

  10. Molina Grima, E., Belarbi, E.H., Acién Fernández, F.G., Robles Medina, A., Chisti, Y.: Recovery of microalgal biomass and metabolites: process option and economics. Biotechnol. Adv. 20, 491–515 (2003)

    Article  Google Scholar 

  11. Salim, S., Vermuë, M.H., Wijffels, R.H.: Ratio between autoflocculating and target microalgae affects the energy-efficient harvesting by bio-flocculation. Bioresour. Technol. 118, 49–55 (2012)

    Article  Google Scholar 

  12. Beach, E.S., Eckelman, M.J., Cui, Z., Brentner, L., Zimmerman, J.B.: Preferential technological and life cycle environmental performance of chitosan flocculation for harvesting of the green algae Neochloris oleoabundans. Bioresour. Technol. 121, 445–449 (2012)

    Article  Google Scholar 

  13. Edzwald, J.K.: Algae, bubbles, coagulants, and dissolved air flotation. Water Sci. Technol. 27, 67–81 (1993)

    Google Scholar 

  14. Jarvis, P., Buckingham, P., Holden, B., Jefferson, B.: Low energy ballasted flotation. Water Res. 43, 3427–3434 (2009)

    Article  Google Scholar 

  15. Mussgnug, J.H., Klassen, V., Schlüter, A., Kruse, O.: Microalgae as substrates for fermentative biogas production in a combined biorefinery concept. J. Biotechnol. 150, 51–56 (2010)

    Article  Google Scholar 

  16. Heaven, S., Milledge, J., Zhang, Y.: Comments on Anaerobic digestion of microalgae as a necessary step to make microalgal biodiesel sustainable. Biotechnol. Adv. 29, 164–167 (2011)

    Article  Google Scholar 

  17. Golueke, C.G., Oswald, W.J., Gotaas, H.B.: Anaerobic digestion of algae. Appl. Biotechnol. 5, 47–55 (1957)

    Google Scholar 

  18. Zamalloa, C., Boon, N., Verstraete, W.: Anaerobic digestibility of Scenedesmus obliquus and Phaeodactylum tricornutum under mesophilic and thermophilic conditions. Appl. Energy 92, 733–738 (2012)

    Article  Google Scholar 

  19. Yen, H.W., Brune, D.E.: Anaerobic co-digestion of algal sludge and waste paper to produce methane. Bioresour. Technol. 98, 130–134 (2007)

    Article  Google Scholar 

  20. Gonzalez-Fernandez, C., Sialve, B., Bernet, N., Steyer, J.P.: Impact of microalgae characteristics on their conversion to biofueld. Part II focus on biomethane production. Biofuels Bioprod. Biorefin. 6, 205–218 (2012)

    Article  Google Scholar 

  21. González-Fernández, C., Sialve, B., Bernet, N., Steyer, J.P.: Thermal pretreatment to improve methane production of Scenedesmus biomass. Biomass Bioenergy 40, 105–111 (2012)

    Article  Google Scholar 

  22. Abo-Shady, A.M., Mohamed, Y.A., Lasheen, T.: Chemical composition of the cell wall in some green algae species. Biol. Plant. 35, 629–632 (1993)

    Article  Google Scholar 

  23. Ehime, E.A., Holm-Nielsen, J.B., Poulsen, M., Boelsmand, J.E.: Influence of different pre-treatment routes on the anaerobic digestion of a filamentous algae. Renew. Energy 50, 476–480 (2013)

    Article  Google Scholar 

  24. Alzate, M.E., Munoz, R., Rogalla, F., Fdz-Polanco, F., Pérez-Elvira, S.I.: Biochemical methane potential of microalgae: influence of substrate to inoculum ratio, biomass concentration and pretreatment. Bioresour. Technol. 123, 488–494 (2012)

    Article  Google Scholar 

  25. Shi, C.Y.: Mass Flow and Energy Efficiency of Municipal Wastewater Treatment Plants. IWA Publishing, London (2011)

    Google Scholar 

  26. Dutch Foundation for Applied Water Research (STOWA): Cambi process sheets. Web. www.stowa-selectedtechnologies.nl/Sheets/Cambi.Process.html (2006). Accessed 18 May 2012

  27. Henderson, R.K., Parsons, S.A., Jefferson, B.: The potential for using bubble modification chemicals in dissolved air flotation for algae removal. Sep. Sci. Technol. 44, 1923–1940 (2009)

    Article  Google Scholar 

  28. Greenberg, A.E., Clesceri, L.S., Eaton, A.D.: Standard Methods for the Examination of Water and Wastewater. APHA, Baltimore (1992)

    Google Scholar 

  29. Angelidaki, I., Alves, M., Bolzonella, D., Borzacconi, L., Campos, J.L., Guwy, A.J., Kalyuzhnyi, S., Jenicek, P., van Lier, J.B.: Defining the biomethane potential (BMP) of solid organic waste and energy crops: a proposed protocol for batch assays. Water Sci. Technol. 59, 927–934 (2009)

    Article  Google Scholar 

  30. Zamalloa, C., Vulsteke, E., Albrecht, J., Verstraete, W.: The techno-economic potential of renewable energy through the anaerobic digestion of microalgae. Bioresour. Technol. 102, 1149–1158 (2011)

    Article  Google Scholar 

  31. Henderson, R.K., Parsons, S.A., Jefferson, B.: The impact of differing cell and algogenic organic matter (AOM) characteristics on the coagulation and flotation of algae. Water Res. 44, 3617–3624 (2010)

    Article  Google Scholar 

  32. Granados, M.R., Acien, F.G., Gomez, C., Fernandez-Sevilla, J.M., Molina Grima, E.: Evaluation of flocculants for the recovery of freshwater microalgae. Bioresour. Technol. 118, 102–110 (2012)

    Article  Google Scholar 

  33. Ras, M., Laurent, L., Sialve, B., Bernet, N., Steyer, J.P.: Experimental study on a coupled process of production and anaerobic digestion of Chlorella vulgaris. Bioresour. Technol. 102, 200–206 (2011)

    Article  Google Scholar 

  34. Valo, A., Carrère, H., Delgenès, J.P.: Thermal, chemical and thermo-chemical pre-treatment of waste activated sludge for anaerobic digestion. J. Chem. Technol. Biotechnol. 79, 1197–1203 (2004)

    Article  Google Scholar 

  35. Austin, D., Nivala, J.: Energy requirement for nitrification and biological nitrogen removal in engineered wetlands. Ecol. Eng. 35, 184–192 (2009)

    Article  Google Scholar 

  36. Syrett, P.J., Thomas, E.M.: The assay of nitrate reductase in whole cells of Chlorella: strain differences and the effect of cell walls. New Phytol. 72, 1307–1310 (1973)

    Article  Google Scholar 

  37. Henderson, R.K., Chips, M., Cornwell, N., Hitchins, P., Holden, B., Hurley, S., Parsons, S.A., Wetherill, A., Jefferson, B.: Experiences of algae in UK waters: a treatment perspective. Water Environ. J. 22, 184–188 (2008)

    Article  Google Scholar 

  38. Henderson, R.K., Parsons, S.A., Jefferson, B.: The impact of variable algal functionality on treatment. Water Res. 42, 1827–1845 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thanks the EU Framework 7 project Advance Technologies for Water Resources and Management (ATWARM), Marie Curie Initial Training Network, No. 238273 as well as the Engineering and Physical Sciences Research Council (EPSRC), Anglian Water, Severn Trent Water and Scottish Water for the financial and intellectual support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raffaella Villa.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ometto, F., Whitton, R., Coulon, F. et al. Improving the Energy Balance of an Integrated Microalgal Wastewater Treatment Process. Waste Biomass Valor 5, 245–253 (2014). https://doi.org/10.1007/s12649-013-9230-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-013-9230-2

Keywords

Navigation