Advertisement

Waste and Biomass Valorization

, Volume 4, Issue 3, pp 421–439 | Cite as

Waste Gasification by Thermal Plasma: A Review

  • Frédéric FabryEmail author
  • Christophe Rehmet
  • Vandad Rohani
  • Laurent Fulcheri
Reviews

Abstract

This paper proposes an overview of waste-to-energy conversion by gasification processes based on thermal plasma. In the first part, basic aspects of the gasification process have been discussed: chemical reaction in gasification, main reactor configuration, chemical conversion performances, tar content in syngas and performances in function of the design and the operation conditions (temperature, pressure, oxidizing agent…). In the second part of the paper are compared the performances, available in the scientific literature, of various waste gasification processes based on thermal plasma (DC or AC plasma torches) at lab scale versus typical performances of waste autothermal gasification: LHV of the syngas, cold gas efficiency and net electrical efficiency. In the last part, a review has been done on the various torch technologies used for waste gasification by plasma at industrial scale, the major companies on this market and the perspectives of the industrial development of the waste gasification by thermal plasma. The main conclusions are that plasma technology is considered as a highly attractive route for the processing of waste-to-energy and can be easily adapted to the treatment of various wastes (municipal solid wastes, heavy oil, used car tires, medical wastes…). The high enthalpy, the residence time and high temperature in plasma can advantageously improve the conditions for gasification, which are inaccessible in other thermal processes and can allow reaching, due to low tar content in the syngas, better net electrical efficiency than autothermal processes.

Keywords

Allothermal process Gasification Syngas Thermal plasma torch Waste-to-energy Tar content 

Notes

Acknowledgments

This work was financially supported by the French administrative region “Provence—Alpes—Côte d’Azur—PACA” under the VALOPLASMA Project N° 2008–01465 “Traitement de déchets issus de l’industrie de la parfumerie par torche à plasma”.

References

  1. 1.
    Nishikawa, H., Ibe, M., Tanaka, M., Takemoto, T., Ushio, M.: Effect of DC steam plasma on gasifying carbonized waste. Vacuum 80, 1311–1315 (2006)CrossRefGoogle Scholar
  2. 2.
    Nzihou, A.: Toward the valorization of waste and biomass. Waste Biomass Valoriz. 1, 3–7 (2010)CrossRefGoogle Scholar
  3. 3.
    Zhang, L., Xu, C., Champagne, P.: Overview of recent advances in thermo-chemical conversion of biomass. Energy Convers. Manag. 51, 969–982 (2010)CrossRefGoogle Scholar
  4. 4.
    Bosmans, A., Vanderreydt, I., Geysen, D., Helsen, L.: The crucial role of waste-to-energy technologies in enhanced landfill mining: a technology review. J. Clean. Prod.—Article in press—doi: 10.1016/j.jclepro.2012.05.032 (2012)
  5. 5.
    Di Gregorio, F., Zaccariello, L.: Fluidized bed gasification of a packaging derived fuel: energetic, environmental and economic performances comparison for waste-to-energy plants. Energy 42, 331–341 (2012)CrossRefGoogle Scholar
  6. 6.
    Castaldi, M.J., Themelis, N.J.: The case for increasing the global capacity for waste to energy (WTE). Waste Biomass Valoriz 1, 91–105 (2010)CrossRefGoogle Scholar
  7. 7.
    Yang, H., Yan, R., Chen, H., Lee, D.H., Liang, D.T., Zheng, C.: Pyrolysis of palm oil wastes for enhanced production of hydrogen rich gases. Fuel Process. Technol. 87, 935–942 (2006)CrossRefGoogle Scholar
  8. 8.
    Review of technologies for gasification of biomass and wastes. E4tech June 2009, http://www.nnfcc.co.uk/tools/review-of-technologies-for-gasification-of-biomass-and-wastes-nnfcc-09-008 (2009)
  9. 9.
    Arena, U.: Process and technological aspects of municipal solid waste gasification. Rev. Waste Manage. 32, 625–639 (2012)CrossRefGoogle Scholar
  10. 10.
    Ricketts, B., Hotchkiss, R., Livingston, B., Hall, M.: Technology status review of waste/biomass co-gasification with coal. IChemE Fifth European Gasification Conference, 8–10 April 2002, Noordwijk, The Netherlands (2002)Google Scholar
  11. 11.
    Morris, M., Waldheim, L.: Energy recovery from solid waste fuels using advanced gasification technology. Waste Manag. 18, 557–564 (1998)CrossRefGoogle Scholar
  12. 12.
    Göransson, K., Söderlind, U., He, J., Zhang, W.: Review of syngas production via biomass DFBGs. Renew. Sustain. Energ. Rev. 15, 482–492 (2011)CrossRefGoogle Scholar
  13. 13.
    Manyà, J.J., Sánchez, J.L., Ábrego, J., Gonzalo, A., Arauzo, J.: Influence of gas residence time and air ratio on the air gasification of dried sewage sludge in a bubbling fluidised bed. Fuel 85, 2027–2033 (2006)CrossRefGoogle Scholar
  14. 14.
    Kim, H.Y.: A low cost production of hydrogen from carbonaceous wastes. Int. J. Hydrogen Energ. 28, 1179–1186 (2003)CrossRefGoogle Scholar
  15. 15.
    Zhao, Y., Sun, S., Zhou, H., Sun, R., Tian, H., Luan, J., Qian, J.: Experimental study on sawdust air gasification in an entrained-flow reactor. Fuel Process. Technol. 91, 910–914 (2010)CrossRefGoogle Scholar
  16. 16.
    Yassin, L., Lettieri, P., Simons, S., Germanà, A.: Techno-economic performance of energy-from-waste fluidized bed combustion and gasification processes in the UK context. Chem. Eng. J. 146, 315–327 (2009)CrossRefGoogle Scholar
  17. 17.
    Arena, U., Di Gregorio, F., Amorese, C., Mastellone, M.L.: A techno-economic comparison of fluidized bed gasification of two mixed plastic wastes. Waste Manag. 31, 1494–1504 (2011)CrossRefGoogle Scholar
  18. 18.
    Xiao, G., Ni, M.J., Chi, Y., Jin, B.S., Xiao, R., Zhong, Z.P., Huang, Y.J.: Gasification characteristics of MSW and an ANN prediction model. Waste Manag. 29, 240–244 (2009)CrossRefGoogle Scholar
  19. 19.
    Arena, U., Zaccariello, L., Mastellone, M.L.: Fluidized bed gasification of waste-derived fuels. Waste Manag. 30, 1212–1219 (2010)CrossRefGoogle Scholar
  20. 20.
    Surisetty, V.R., Kozinski, J., Dalai, A.K.: Biomass, availability in Canada, and gasification: an overview. Biomass Conv. Bioref. 2, 73–85 (2012)CrossRefGoogle Scholar
  21. 21.
    Belgiorno, V., De Feo, G., Della Rocca, C., Napoli, R.M.A.: Energy from gasification of solid wastes. Waste Manag. 23, 1–15 (2003)CrossRefGoogle Scholar
  22. 22.
    Faaij, A., Van Ree, R., Waldheim, L., Olsson, E., Oudhuis, A., Van Wijk, A., Daey-Ouwens, C., Turkenburg, W.: Gasification of biomass wastes and residues for electricity production. Biomass Bioenergy 12(6), 387–407 (1997)CrossRefGoogle Scholar
  23. 23.
    Cherednichenko, VS., Anshakov, AS., Danilenko, AA., Michajlov, VE., Faleev, VA., Kezevich, DD.: Domestic waste plasma gasification technology and its comparison with ordinary one burning on the final products. Ecol. Electrotechnol. Waste Process.—KORUS 2002. 211–213 (2002)Google Scholar
  24. 24.
    Chang, J.S., Gu, B.W., Looy, P.C., Chu, F.Y., Simpson, C.J.: Thermal plasma pyrolysis of used old tires for production of syngas. J. Environ. Sci. Health., Part A 31(7), 1781–1799 (1996)Google Scholar
  25. 25.
    Huang, H., Tang, L., Wu, C.Z.: Characterization of gaseous and solid product from thermal plasma pyrolysis of waste rubber. Environ. Sci. Technol. 37, 4463–4467 (2003)CrossRefGoogle Scholar
  26. 26.
    Cheng, T.W., Chu, J.P., Tzeng, C.C., Chen, Y.S.: Treatment and recycling of incinerated ash using thermal plasma technology. Waste Manag. 22, 485–490 (2002)CrossRefGoogle Scholar
  27. 27.
    Chu, J.P., Hwang, I.J., Tzeng, C.C., Kuo, Y.Y., Yu, Y.J.: Characterization of vitrified slag from mixed medical waste surrogates treated by a thermal plasma system. J. Hazard. Mater. 58, 179–194 (1998)CrossRefGoogle Scholar
  28. 28.
    Tzeng, C.C., Kuo, Y.Y., Huang, T.F., Lin, D.L., Yu, Y.J.: Treatment of radioactive wastes by plasma incineration and vitrification for final disposal. J. Hazard. Mater. 58, 207–220 (1998)CrossRefGoogle Scholar
  29. 29.
    Mohai, I., Szépvölgyi, J.: Treatment of particulate metallurgical wastes in thermal plasmas. Chem. Eng. Process. 44, 225–229 (2005)CrossRefGoogle Scholar
  30. 30.
    Colby, S., Turner, Z., Utley, D., Duy, C.: Treatment of radioactive reactive mixed waste. WM’06 Conference, February 26-March 2, Tucson, AZ (2006)Google Scholar
  31. 31.
    Fauchais, P.: Technologies plasma : applications au traitement des déchets. Techniques de l’Ingénieur G2055, 1–11 (2007)Google Scholar
  32. 32.
    PhG, Rutberg, Bratsev, A.N., Kuznetsov, V.A., Popov, V.E., Ufimtsev, A.A., Shtengel, S.V.: On efficiency of plasma gasification of wood residues. Biomass Bioenergy 35, 495–504 (2011)CrossRefGoogle Scholar
  33. 33.
    Boulos, M.I.: New frontiers in thermal plasma processing. Pure Appl. Chem. 68(5), 1007–1010 (1996)CrossRefGoogle Scholar
  34. 34.
    Knoef, HAM. Handbook. Biomass gasification. BTG, Netherlands, ISBN: 90-810068-2005-380. (2005)Google Scholar
  35. 35.
    Khodakov, AY., Chu, W., Fongarland, P.: Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Inform., doi:  10.1002/chin.200733255 (2007)
  36. 36.
    Ladwig, M., Lindvall, K., Conzelman, R.: The realised gas turbine process with sequential combustion: experience, state of development, prospects. VGB Powertech 87(10), 30–35 (2007)Google Scholar
  37. 37.
    Ishikawa, M., Terauchi, M., Komori, T., Yasuraoka, J.: Development of high efficiency gas turbine combined cycle power plant. Mitsubishi Heavy Ind ltd. Tec. rev. 45(1), 15–17 (2008)Google Scholar
  38. 38.
    Galeno, G., Minutillo, M., Perna, A.: From waste to electricity through integrated plasma gasification/fuel cell (IPGFC) system. Int. J. Hydrogen Energy 36, 1692–1701 (2011)CrossRefGoogle Scholar
  39. 39.
    Oxtoby, D. W.: Principles of modern chemistry (5th ed.). Thomson Brooks/Cole. ISBN 0-03-035373-4 (2002)Google Scholar
  40. 40.
    Bridgwater, A.V.: Renewable fuels and chemicals by thermal processing of biomass. Chem. Eng. J. 91, 87–102 (2003)CrossRefGoogle Scholar
  41. 41.
    Chopra, S., Jain, AK.: A review of fixed bed gasification systems for biomass. Agric. Eng. Int.: the CIGR Ejournal. Invited Overview 5:IX April 2007 (2007)Google Scholar
  42. 42.
    Reed, TB., Gaur, S.: A survey of biomass gasification ISBN 1-890607-13-4180. (2001)Google Scholar
  43. 43.
    Petitpas, G., Rollier, J.D., Darmon, A., Gonzalez-Aguilar, J., Metkemeijer, R., Fulcheri, L.: A comparative study of non-thermal plasma assisted reforming technologies. Int. J. Hydrogen Energ. 32, 2848–2867 (2007)CrossRefGoogle Scholar
  44. 44.
    Brage, C., Qizhuang, U., Sjostrom, K.: Use of amino phase adsorbent for biomass tar sampling and separation. Fuel 76(2), 137–142 (1997)CrossRefGoogle Scholar
  45. 45.
    Neeft, JPA., Knoef, HAM., Onaji, P.: Behaviour of tar in biomass gasification systems. Tar related problems and their solutions. November Report No. 9919. Energy from Waste and Biomass (EWAB), The Netherlands (1999)Google Scholar
  46. 46.
    Milne, TA., Evans, RJ.: Biomass gasifier tars: their nature, formation, and conversions. National Renewable Energy Laboratory, Golden, CO. NREL/TP-570–25357 (1998)Google Scholar
  47. 47.
    Devi, L., Ptasinski, K.J., Janssen, F.: A review of the primary measures for tar elimination in biomass gasification processes. Biomass Bioenergy 24, 125–140 (2003)CrossRefGoogle Scholar
  48. 48.
    Han, J., Kim, H.: The reduction and control technology of tar during biomass gasification/pyrolysis: an overview. Renew. Sustain. Energy Rev. 12, 397–416 (2008)CrossRefGoogle Scholar
  49. 49.
    Mayerhofer, M., Mitsakis, P., Meng, X., De Jong, W., Spliethoff, H., Gaderer, M.: Influence of pressure, temperature and steam on tar and gas in allothermal fluidized bed gasification. Fuel 99, 204–209 (2012)CrossRefGoogle Scholar
  50. 50.
    Ponzio, A., Kalisz, S., Blasiak, W.: Effect of operating conditions on tar and gas composition in high temperature air/steam gasification (HTAG) of plastic containing waste. Fuel Process. Technol. 87, 223–233 (2006)CrossRefGoogle Scholar
  51. 51.
    Rabou, L., Zwart, R., Vreugdenhil, B., Bos, L.: Tar in biomass producer gas, the energy research centre of the Netherlands (ECN) experience: an enduring challenge. Energ. Fuels 23, 6189–6198 (2009). doi: 10.1021/ef9007032 CrossRefGoogle Scholar
  52. 52.
    Kinoshita, C.M., Wang, Y., Zhou, J.: Tar formation under different biomass gasification conditions. J. Anal. Appl. Pyrolysis. 29, 169–181 (1994)CrossRefGoogle Scholar
  53. 53.
    Arena, U., Zaccariello, L., Mastellone, M.L.: Tar removal during the fluidized bed gasification of plastic waste. Waste Manag. 29, 783–791 (2009)CrossRefGoogle Scholar
  54. 54.
    Graciosa Pereira, E., Nogueira Da Silva, J., De Oliveira, J., Machado, C.: Sustainable energy: a review of gasification technologies. Renew. Sustain. Energy Rev. 16, 4753–4762 (2012)CrossRefGoogle Scholar
  55. 55.
    Xu, C., Donald, J., Byambajav, E., Ohtsuka, Y.: Recent advances in catalysts for hot-gas removal of tar and NH3 from biomass gasification. Fuel 89, 1784–1795 (2010)CrossRefGoogle Scholar
  56. 56.
    Nemanova, V., Nordgreen, T., Engvall, K., Sjöström, K.: Biomass gasification in an atmospheric fluidised bed: tar reduction with experimental iron-based granules from Höganäs AB, Sweden. Catal. Today 176, 253–257 (2011)CrossRefGoogle Scholar
  57. 57.
    Bangala, D., Abatzoglou, N., Martin, J.P., Chornet, E.: Catalytic gas conditioning: application to biomass and waste gasification. Ind. Eng. Chem. Res. 36, 4184–4192 (1997)CrossRefGoogle Scholar
  58. 58.
    Higman, C., Van Der Burgt, M.: Gasification. Oxford, S. 94, ISBN 978-0-7506-8528-3 (2008)Google Scholar
  59. 59.
    Valin, S., Ravel, S., Guillaudeau, J., Thiery, S.: Comprehensive study of the influence of total pressure on products yields in fluidized bed gasification of wood sawdust. Fuel Process. Technol. 91, 1222–1228 (2010)CrossRefGoogle Scholar
  60. 60.
    Nair, S.A., Pemen, A.J.M., Yan, K., Van Heesch, E.J.M., Ptasinski, K.J., Drinkenburg, A.A.H.: Chemical processes in tar removal from biomass derived fuel gas by pulsed corona discharges. Plasma Chem. and. Plasma Process. 23(4), 665–680 (2003)CrossRefGoogle Scholar
  61. 61.
    Nair, S.A., Yan, K., Safitri, A., Pemen, A.J.M., Van Heesch, E.J.M., Ptasinski, K.J., Drinkenburg, A.A.H.: Streamer corona plasma for fuel gas cleaning: comparison of energization techniques. J. Electrost. 63, 1105–1114 (2005)CrossRefGoogle Scholar
  62. 62.
    Luche, J., Falcoz, Q., Bastien, T., Leninger, JP., Arabi, K., Aubry, O., Khacef, A., Cormier, JM., Lédé, J.: Plasma treatments and biomass gasification. IOP Conf. Ser. Mater. Sci. Eng. 29 01.2011 DOI: 10.1088/1757-899X/29/1/012011 (2012)
  63. 63.
    Glocker, B., Nentwig, G., Messerschmid, E.: 1–40 kW steam respectively multi gas thermal plasma torch system. Vacuum 59, 35–46 (2000)CrossRefGoogle Scholar
  64. 64.
    Fourcault, A., Marias, F., Michon, U.: Modelling of thermal removal of tars in a high temperature stage fed by a plasma torch. Biomass Bioenerg. 34, 1363–1374 (2010)CrossRefGoogle Scholar
  65. 65.
    Cheng, T.W., Tu, C.C., Ko, M.S., Ueng, T.H.: Production of glass-ceramics from incinerator ash using lab-scale and pilot-scale thermal plasma systems. Ceram. Int. 37, 2437–2444 (2011)CrossRefGoogle Scholar
  66. 66.
    An’Shakov, A.S., Faleev, V.A., Danilenko, A.A., Urbakh, E.K., Urbakh, A.E.: Investigation of plasma gasification of carbonaceous technogeneous wastes. Thermophys. Aeromech. 14(4), 607–616 (2007)CrossRefGoogle Scholar
  67. 67.
    Lemmens, B., Elslander, H., Vanderreydt, I., Peys, K., Diels, L., Oosterlinck, M., Joos, M.: Assessment of plasma gasification of high caloric waste streams. Waste Manag. 27, 1562–1569 (2007)CrossRefGoogle Scholar
  68. 68.
    Gomez, E., Amutha Rani, D., Cheesemen, C.R., Deegan, D., Wise, M., Boccaccini, A.R.: Thermal plasma technology for the treatment of wastes: a critical review. J. Hazard. Mater. 161, 614–626 (2009)CrossRefGoogle Scholar
  69. 69.
    Nema, S.K., Ganeshprasad, K.S.: Plasma pyrolysis of medical waste. Curr. Sci. 83(3), 271–278 (2002)Google Scholar
  70. 70.
    Hetland, J., Lynum, S., Santen, S.: Advanced waste-to-energy technology offering safe and inert rendering of residues with almost complete volume reduction. 100%RES—A challenge for island sustainable development. 283–293 ISBN 84-609-6326-8 (2005)Google Scholar
  71. 71.
    Murphy, A.B., Farmer, A.J.D., Horrigan, E.C., McAllister, T.: Plasma destruction of ozone depleting substances. Plasma Chem. Plasma Process. 22(3), 371–385 (2002). doi: 10.1023/A:1015365032020 CrossRefGoogle Scholar
  72. 72.
    Huang, H., Tang, L.: Treatment of organic waste using thermal plasma pyrolysis technology. Energy Convers. Manag. 48, 1331–1337 (2007)CrossRefGoogle Scholar
  73. 73.
    Tang, L., Huang, H., Zhao, Z., Wu, C.Z., Chen, Y.: Pyrolysis of polypropylene in a nitrogen plasma reactor. Ind. Eng. Chem. Res. 42, 1145–1150 (2003)CrossRefGoogle Scholar
  74. 74.
    Tang, L., Huang, H., Hao, H., Wang, H., Wang, Y., Zhu, C., Li, Q.: Waste tires disposal by thermal plasma for power generation and carbon black recovery. Power and Energ. Eng. Conf. APPEEC 2009. Asia-Pacific 27–31 March 2009:1–4 (2009)Google Scholar
  75. 75.
    Zhao, Z., Huang, H., Wu, C., Li, H., Chen, Y.: Biomass pyrolysis in an argon/hydrogen plasma reactor. Eng. Life Sci. 1(5), 197–199 (2001)CrossRefGoogle Scholar
  76. 76.
    Shie, J.L., Chang, C.Y., Tu, W.K., Yang, Y.C., Liao, J.K., Tzeng, C.C., Li, H.Y., Yu, Y.J., Kuo, C.H., Chang, L.C.: Major products obtained from plasma torch pyrolysis of sunflower-oil cake. Energ. Fuels 22, 75–82 (2008)CrossRefGoogle Scholar
  77. 77.
    Guénadou, D., Lorcet, H., Poulain, S., Peybernès, J.: Optimisation of the working parameters for gasification of a bio-oil in a thermal plasma. Proceedings ISPC19—2009, Bochum, Germany—P3.16.03 (2009)Google Scholar
  78. 78.
    Van Oost, G., Hrabovsky, M., Kopecky, V., Konrad, M., Hlina, M., Kavka, T., Chumak, A., Beeckman, E., Verstraeten, J.: Pyrolysis of waste using a hybrid argon-water stabilized torch. Vacuum 80, 1132–1137 (2006)CrossRefGoogle Scholar
  79. 79.
    Van Oost, G., Hrabovsky, M., Kopecky, V., Konrad, M., Hlina, M., Kavka, T.: Pyrolysis/gasification of biomass for synthetic fuel production using a hybrid gas-water stabilized plasma torch. Vacuum 83, 209–212 (2009)CrossRefGoogle Scholar
  80. 80.
    Hlína, M., Hrabovský, M., Kopecký, V., Konrád, M., Kavka, T.: Plasma gasification of wood and production of gas with low content of tar. Czechoslov. J. Phys. 56(B), 1179–1184 (2006)CrossRefGoogle Scholar
  81. 81.
    Hrabovsky, M., Konrad, M., Kopecky, V., Hlina, M., Kavka, T.: Gasification of biomass in water/gas-stabilized plasma for syngas production. Czechoslov. J. Phys. 56(B), 1199–1206 (2006)CrossRefGoogle Scholar
  82. 82.
    Hrabovsky, M., Kopecký, V., Sember, V., Kavka, T., Chumak, O., Konrad, M.: Properties of Hybrid Water/gas DC arc plasma torch. IEEE Transact. Plasma Sci. 34(4), 1566–1575 (2006)CrossRefGoogle Scholar
  83. 83.
    Sforza, T., Charlier, C., Hrabovsky, M., Chumak, O.: Thermal plasma assisted gasification of polymers. WDS’09 Proc. Contributed pap., Part II:176–181—ISBN 978-80-7378-102-6 (2009)Google Scholar
  84. 84.
    Hrabovsky, M.: Thermal plasma generators with water stabilized arc. Open Plasma Phys. J. 2, 99–104 (2009)CrossRefGoogle Scholar
  85. 85.
    Tendler, M., Rutberg, P., Van Oost, G.: Plasma based waste treatment and energy production. Plasma Phys. Control. Fusion 47, A219–A230 (2005)CrossRefGoogle Scholar
  86. 86.
    Bratsev, A.N., Popov, V.E., Rutberg, A.F., Shtengel’, S.V.: A facility for plasma gasification of waste of various types. High Temp. 44(6), 823–828 (2006)CrossRefGoogle Scholar
  87. 87.
    Kalinenko, R.A., Kuznetsov, A.P., Levitsky, A.A., Messerle, V.E., Mirokhin, Y.A., Polak, L.S., Sakipov, Z.B., Ustimenko, A.B.: Pulverized coal plasma gasification. Plasma Chem. Plasma Process. 13(1), 141–167 (1993)CrossRefGoogle Scholar
  88. 88.
    Heberlein, J., Murphy, AB.: Thermal plasma waste treatment. J. Phys. D Appl. Phys. 41, 053001 doi: 10.1088/0022-3727/41/5/053001 (2008)
  89. 89.
    Bui, T., Loof, R., Bhattacharya, S.C.: Multi-stage reactor for thermal gasification of wood. Energy 19(4), 397–404 (1994)CrossRefGoogle Scholar
  90. 90.
    Popov, VE., Bratsev, AN., Kuznetsov, VA., Shtengel, SV., Ufimtsev, AA.: Plasma gasification of waste as a method of energy saving. 11th European Conference on High-Technology Plasma Processes—HTTP 11—J.Phys. Confer. Ser. 275, 012015 doi: 10.1088/1742-6596/275/1/012015 (2011)
  91. 91.
    Leal-Quirós, E.: Plasma processing of municipal solid waste. Brazilian. J. Phys. 34(4), 1587–1593 (2004)Google Scholar
  92. 92.
    Willis, KP., Osada, S., Willerton, KL.: Plasma gasification: lessons learned at Ecovalley WTE facility. Proceedings of the 18th Annual North American Waste-to-Energy Conference, Orland, Florida, USA May 11-13—NAWTEC 18—3515 (2010)Google Scholar
  93. 93.
    Zhang, Q., Dor, L., Fenigshtein, D., Yang, W., Blasiak, W.: Gasification of municipal solid waste in the plasma gasification melting process. Appl. Energ. 90, 106–112 (2012)CrossRefGoogle Scholar
  94. 94.
    Carabin, P., Holcroft, G.: Plasma resource recovery technology—converting waste to energy and valuable products. 13th North American Waste to Energy Conference, Orlando, Florida, USA, May 23-25—NAWTEC 13—3155 (2005)Google Scholar
  95. 95.
    Byun, Y., Cho, M., Chung, J.W., Namkung, W., Lee, H.D., Jang, S.D., Kim, Y.S., Lee, J.H., Lee, C.R., Hwang, S.M.: Hydrogen recovery from the thermal plasma gasification of solid waste. J. Hazard. Mater. 190, 317–323 (2011)CrossRefGoogle Scholar
  96. 96.
    Dave, P.N., Joshi, A.K.: Plasma pyrolysis and gasification of plastics waste–a review. J. Sci. Ind. Res. 69, 177–179 (2010)Google Scholar
  97. 97.
    Park, H.S., Kim, C.G., Kim, S.J.: Characteristics of PE gasification by steam plasma. J. Ind. Eng. Chem. 12(2), 216–223 (2006)Google Scholar
  98. 98.
    Kim, S.W., Park, H.S., Kim, H.J.: 100 kW steam plasma process for treatment of PCBs (polychlorinated biphenyls) waste. Vacuum 70, 59–66 (2003)CrossRefGoogle Scholar
  99. 99.
    Moustakas, K., Fatta, D., Malamis, S., Haralambous, K., Loizidou, M.: Demonstration plasma gasification/vitrification system for effective hazardous waste treatment. J. Hazard. Mater. B 123, 120–126 (2005)CrossRefGoogle Scholar
  100. 100.
    Moustakas, K., Xydis, G., Malamis, S., Haralambous, K.J., Loizidou, M.: Analysis of results from the operation of a pilot plasma gasification/vitrification unit for optimizing its performance. J. Hazard. Mater. 151, 473–480 (2008)CrossRefGoogle Scholar
  101. 101.
    Boudesocque, N., Lemort, F., Girold, C., Lafon, C., Vandensteendam C., Baronnet JM.: Organic liquid waste decontamination and gasification by underwater thermal plasma. 18th International Symposium of Plasma Chemistry, August 26–31, 2007b, Kyoto, Japan (2007)Google Scholar
  102. 102.
    Lupa, C.J., Wylie, S.R., Shaw, A., Al-Shamma’a, A., Sweetman, A.J., Herbert, B.M.J.: Experimental analysis of biomass pyrolysis using microwave-induced plasma. Fuel Process. Technol. 97, 79–84 (2012)CrossRefGoogle Scholar
  103. 103.
    Shie, J.L., Tsou, F.J., Lin, K.L.: Steam plasmatron gasification of distillers grains residue from ethanol production. Bioresour. Technol. 101, 5571–5577 (2010)CrossRefGoogle Scholar
  104. 104.
    Shie, J.L., Tsou, F.J., Lin, K.L., Chang, C.Y.: Bioenergy and products from thermal pyrolysis of rice straw using plasma torch. Bioresour. Technol. 101, 761–768 (2010)CrossRefGoogle Scholar
  105. 105.
    Rutberg, PhG., Lukyanov, SA., Kiselev, AA., Kuschev, SA., Nakonechny, GhV., Nikonov, AV., Popov, SD., Serba, EO., Spodobin, VA., Surov, AV.: Investigation of parameters of the three phase high-voltage alternating current plasma generator with power up to 100 kW working on steam. 11th European Conference on High-Technology Plasma Processes (HTPP 11)—J. Phys. Conference Series 275, 012006—DOI:  10.1088/1742-6596/275/1/012006 (2011)
  106. 106.
    PhG, Rutberg, Safronov, A.A., Popov, S.D., Surov, A.V., GhV, Nakonechny: Multiphase stationary plasma generators working on oxidizing media. Plasma Phys. Control. Fusion 47, 1681–1696 (2005)CrossRefGoogle Scholar
  107. 107.
    Rutberg, PhG, Safronov, A.A., Popov, S.D., Surov, A.V., Nakonechnyi, G.V.: Multiphase electric-arc AC plasma generators for plasma technologies. High Temp. 44(2), 199–205 (2006)CrossRefGoogle Scholar
  108. 108.
    Rutberg, PhG., Kumkova, II., Kuznetsov, VE., Popov, SD., Rutberg, APh., Safronov, AA., Shiryaev, VN., Surov, AV.: High-voltage plasma generators of alternating current with rod electrodes stationary operating on oxidizing media. 16th IEEE Intern. Pulsed Power Conf., June 17–22. 2, 1556-1559Google Scholar
  109. 109.
    Kovshechnikov, V.B., Antonov, G.G., Ufimtsev, A.A.: On the efficiency of gas heating by a three-phase AC gliding arc plasma generator. J. Eng. Phys. Thermophys. 80(6), 1124–1129 (2007)CrossRefGoogle Scholar
  110. 110.
    PhG, Rutberg, Aleksei, A., Safronov, A., Goryachev, V.L.: Strong-current arc discharges of alternating current. IEEE Transact. Plasma Sci. 26(4), 1297–1306 (1998)CrossRefGoogle Scholar
  111. 111.
    Rutberg, PhG., Safronov, AA., Surov, AV., Popov, SD.: Alternating current electric arc plasma generators. 28th ICPIG, Prague, Czech Republic, July 15–20 Topic 11, 1774–1777 (2007)Google Scholar
  112. 112.
    Rutberg, PhG., Kuznetsov, VA., Bratsev, AN., Popov, VE., Shtengel’, SV., Ufimtsev, AA.: Use of carbon dioxide in the chemical synthesis technologies, plasma gasification and carbon production. Symposium A, E-MRS 2010 Fall Meeting, IOP Conf. Series: Mater. Sci. and Eng. 19, 012003 DOI: 10.1088/1757-899X/19/1/012003 (2010)
  113. 113.
    Brothier, M., Gramondi, P., Poletiko, C., Michon, U., Labrot, M., Hacala, A.: Biofuel and hydrogen production from biomass gasification by use of thermal plasma. High Temp. Mater. Process 11, 231–244 (2007)CrossRefGoogle Scholar
  114. 114.
    Westinghouse Plasma Corporation official web site. http://www.westinghouse-plasma.com. Accessed 05 June 2012
  115. 115.
    Europlama official web site. http://www.europlasma.com. Accessed 05 June 2012
  116. 116.
    Phoenix Solutions Company official web site. http://www.phoenixsolutionsco.com. Accessed 12 Sept 2012
  117. 117.
    Morrin, S., Lettieri, P., Chapman, C., Mazzei, L.: Two stage fluid bed-plasma gasification process for solid waste valorisation: technical review and preliminary thermodynamic modelling of sulphur emissions. Waste Manag. 32, 676–684 (2012)CrossRefGoogle Scholar
  118. 118.
    Tetronics International official web site. http://www.tetronics.com. Accessed 25 June 2012
  119. 119.
    Advances Plasma Power official web site. http://www.advancedplasmapower.com. Accessed 25 June 2012
  120. 120.
    Alter NRG Corp. official web site. http://www.alternrg.com. Accessed 25 June 2012
  121. 121.
    C.H.O-Power official web site. http://www.cho-power.com. Accessed 06 June 2012
  122. 122.
    Plasma Arc Technologies Inc. official web site. http://www.plasmaarctech.com. Accessed 04 June 2012
  123. 123.
    Plasco Energy Group Inc. official web site. http://www.plascoenergygroup.com. Accessed 05 June 2012
  124. 124.
    EnerSol Technologies Inc. official web site. http://www.enersoltech.com. Accessed 25 June 2012
  125. 125.
    Bellwether Gasification Technologies Ltd. official web site. http://www.bgt-online.com. Accessed 12 Sept 2012
  126. 126.
    STARTECH’S Plasma Converter System official web site. http://theplasmasolution.com. Accessed 12 Sept 2012
  127. 127.
    Green Power Systems official web site. http://www.greenpowersystems.com. Accessed 25 June 2012
  128. 128.
    PEAT International official web site. http://www.peat.com. Accessed 25 June 2012
  129. 129.
    InEnTec Inc. official web site. http://www.inentec.com/. Accessed 25 June 2012
  130. 130.
    Pyrogenesis Canada Inc. official web site. http://www.pyrogenesis.com. Accessed 04 June 2012
  131. 131.
    Inertam official web site. http://www.inertam.com. Accessed 06 June 2012
  132. 132.
    Messerle, V.E., Peregudov, V.S.: Ignition and stabilization of combustion of pulverized coal fuels by thermal plasma Vol. 2 Investigation and design of thermal plasma technology, pp. 323–343. Cambridge Inter science Publishing, London (1995)Google Scholar
  133. 133.
    Serbin, S.I., Matveev, I.B.: Theoretical investigations of the working processes in a plasma coal gasification system. IEEE Transact Plasma Sci. 38(12), 3300–3305 (2010)CrossRefGoogle Scholar
  134. 134.
    Matveev, I.B., Serbin, S.I.: Modeling of the coal gasification processes in a hybrid plasma torch. IEEE Transact Plasma Sci. 35(6), 1639–1647 (2007)CrossRefGoogle Scholar
  135. 135.
    Matveev, I.B., Serbin, S.I.: Theoretical and experimental investigations of the plasma-assisted combustion and reformation system. IEEE Transact. Plasma Sci. 38(12), 3306–3312 (2010)CrossRefGoogle Scholar
  136. 136.
    Matveev, I.B., Serbin, S.I., Lux, S.M.: Efficiency of a hybrid-type plasma assisted fuel reformation system. IEEE Transact. Plasma Sci. 36(6), 2940–2946 (2008)CrossRefGoogle Scholar
  137. 137.
    Matveev, I.B.: Plasma or retirement. Alternatives to the coal-fired power plants. IEEE Transact. Plasma Sci. 39(12), 3259–3262 (2011)CrossRefGoogle Scholar
  138. 138.
    Matveev, I., Serbin, S.: Preliminary design and CFD modeling of a 1 MW hybrid plasma torch for waste destruction and coal gasification, 2nd Int. Workshop and Exhibition on Plasma Assisted Combustion, Falls Church, Virginia 43–44 (2006)Google Scholar
  139. 139.
    Zverev, SG., Frolov, VYa., Ivanov, DV., Ushin, BA., Petrov, GK., Matveev, IB.: Experimental Investigations of the Hybrid Plasma Torch with Reverse Vortex Stabilization, 4th Int. Workshop and Exhibition on Plasma Assisted Combustion (IWEPAC), Falls Church, Virginia, 2008 39–44 (2008)Google Scholar
  140. 140.
    Matveev, I., Matveyeya, S., Kirchuk, S., Zverev, S.: Development and experimental investigations of high power hybrid plasma torches—5th International Workshop and Exhibition on Plasma Assisted Combustion (IWEPAC), Alexandria, Virginia, USA 66–68 (2009)Google Scholar
  141. 141.
    Applied Plasma Technologies official web site. http://www.plasmacombustion.com. Accessed 16 March 2012
  142. 142.
    Fabry, F., Flamant, G., Fulcheri, L.: Carbon black processing by thermal plasma. Analysis of the particle formation mechanism. Chem. Eng. Sci. 56, 2123–2132 (2001)CrossRefGoogle Scholar
  143. 143.
    Fulcheri, L., Probst, N., Flamant, G., Fabry, F., Grivei, E., Bourrat, X.: Plasma processing: a step towards the production of new grades of carbon black. Carbon 40, 169–176 (2002)CrossRefGoogle Scholar
  144. 144.
    Ravary, B., Fulcheri, L., Bakken, J.A., Flamant, G., Fabry, F.: Influence of the electromagnetic forces on momentum and heat transfer in a 3-phase AC plasma reactor. Plasma Chem. Plasma Process. 19(1), 69–89 (1999)CrossRefGoogle Scholar
  145. 145.
    Ravary, B., Fulcheri, L., Flamant, G., Fabry, F.: Analysis of a 3-phase AC plasma system. High Temp. Mater. Process. 2, 245–260 (1998)Google Scholar
  146. 146.
    Enviroparks Ltd. official web site. http://www.enviroparks.co.uk/. Accessed 25 June 2012
  147. 147.
    Sunbay Energy, Ontario Gasification Facility, Port Hope, Ontario. https://porthope.civicweb.net/content/pdfstorage/F89DEE77D95A41D3BD4BE21E38103EF4-Delegation%20Apr%2015%2008%20Sunbay%20OGF.pdf. Accessed 17 Sept 2012
  148. 148.
    Carabin, P., Gagnon, JR.: Plasma gasification and vitrification of ash-conversion of ash into glass-like products and syngas. 2007 World of Coal Ash (WOCA) May 7–10 2007 Covington, Kentucky, USA (2007)Google Scholar
  149. 149.
    Kaldas, A., Carabin, P., Picard, I., Chevallier, P., Holcroft, G.: Treatment of ship sludge oil using a plasma arc waste destruction system (PAWDS). IT3’07 Conference, May 14–18, Phoenix, AZ (2007)Google Scholar
  150. 150.
    Kaldas, A., Picard, I., Chronopoulos, C., Chevalier, P., Carabin, P., Holcroft, G., Alexander, G., Spezio, J., Mann, J., Molintas, H.: Plasma arc waste destruction system (PAWDS) A novel approach to waste elimination aboard ships. MEETS06—Crystal City (Arlington), Virginia, January 23–25 (2006)Google Scholar
  151. 151.
    Ojha, A., Reuben, AC., Sharma, D.: Solid waste management in developing countries through plasma arc gasification- an alternative approach. ICESD 2012: 5–7 January 2012, Hong Kong, APCBEE Procedia 1, 193–198 (2012)Google Scholar
  152. 152.
    Clark, BJ., Rogoff, MJ.: Economic feasibility of a plasma arc gasification plant, city of Marion, Iowa. Proceedings of the 18th Annual North American Waste-to-Energy Conference, Orland, Florida, USA May 11–13–NAWTEC 18–3502 (2010)Google Scholar
  153. 153.
    Ducharme, C., Themelis, N.: Analysis of thermal plasma—assisted waste-to energy processes. Proceedings of the 18th Annual North American Waste-to-Energy Conference, Orland, Florida, USA May 11–13–NAWTEC 18–3582 (2010)Google Scholar
  154. 154.
    Yang, L., Wang, H., Wang, H., Wang, D., Wang, Y.: Solid waste plasma disposal plant. J. Electrost. 69, 411–413 (2011)CrossRefGoogle Scholar
  155. 155.
    Pourali, M.: Application of plasma gasification technology in waste to energy—challenges and opportunities. IEEE Transact. Sustain. Energ. 1(3), 125–130 (2010)CrossRefGoogle Scholar
  156. 156.
    Artemov, A.V., Bul’ba, V.A., Voshchinin, S.A., Krutyakov, Y.A., Kudrinskii, A.A., Ostryi, I.I., Pereslavtsev, A.V.: Technical and economic operation parameters of a high-temperature plasma plant for production and consumption waste conversion (calculation results and their analysis). Russian. J. Gen. Chem. 82(4), 808–814 (2012)CrossRefGoogle Scholar
  157. 157.
    Loghin, I.: Market barriers to the integrated plasma gasification combined cycle plant implementation–Romanian case. U.P.B. Sci. Bull. Series C 70(2), 111–120 (2008)Google Scholar
  158. 158.
    Seiler, J.M., Hohwiller, C., Imbach, J., Luciani, J.F.: Technical and economical evaluation of enhanced biomass to liquid fuel processes. Energy 35, 3587–3592 (2010)CrossRefGoogle Scholar
  159. 159.
    Byun, Y., Namkung, W., Cho, M., Chung, J.W., Kim, Y.S., Lee, J.H., Lee, C.R., Hwang, S.M.: Demonstration of thermal plasma gasification/vitrification for municipal solid waste treatment. Environ. Sci. Technol. 44, 6680–6684 (2010)CrossRefGoogle Scholar
  160. 160.
    Shie, J.L., Chang, C.Y., Chen, C.S., Shaw, D.G., Chen, Y.H., Kuan, W.H., Ma, H.K.: Energy life cycle assessment of rice straw bio-energy derived from potential gasification technologies. Bioresour. Technol. 102, 6735–6741 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2013

Authors and Affiliations

  • Frédéric Fabry
    • 1
    Email author
  • Christophe Rehmet
    • 1
  • Vandad Rohani
    • 1
  • Laurent Fulcheri
    • 1
  1. 1.PERSÉE—Center for Processes, Renewables Energies and Energy SystemsMINES ParisTechSophia-AntipolisFrance

Personalised recommendations