Skip to main content
Log in

Simultaneous Removal of Molybdenum, Antimony and Selenium Oxyanions from Wastewater by Adsorption on Supported Magnetite

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Mo, Sb and Se form oxyanions in solution, and are therefore difficult to remove by traditional wastewater treatment methods (e.g. alkaline precipitation). In this paper, a method for the simultaneous removal of these three elements from wastewater by adsorption, zeolite-supported magnetite is developed. The adsorbent consists of finely divided magnetite particles on a zeolite substrate as carrier material. Basic adsorption parameters such as ideal pH, maximum adsorption capacity and equilibration time, are determined for the oxyanions separately. Much attention is paid to the study of interferences that can limit adsorption. Anions like sulphate and chloride, which often occur in large amounts in wastewaters, do not really compete for adsorption places on magnetite, but oxyanions largely interfere with each other. The reason for this competition is a similar adsorption mechanism (inner-sphere complex formation) for all studied oxyanions, except for selenate, that forms outer-sphere complexes, as was confirmed by geochemical modeling. The adsorption of Mo, Sb and Se oxyanions from an aqueous solution containing the most important detected interferences and from a real wastewater containing also cations is compared, showing that the most important interferences are identified. The order of adsorption is Mo(VI) > Sb(V) > Se(VI). As a case study, Mo, Sb and Se oxyanions are removed by adsorption from an industrial wastewater, the flue gas cleaning effluent of a waste incinerator. For an adsorbent concentration of 20 g/l, removal efficiencies of 99, 97 and 77 % are obtained for Mo, Sb and Se.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Barceloux, D.G.: Clin. Toxicol. 37(2), 231–237 (1999)

    Article  Google Scholar 

  2. Sheha, R.R., El-Shazly, E.A.: Kinetics and equilibrium modeling of Se(IV) removal from aqueous solutions using metal oxides. Chem. Eng. J. 160(1), 63–71 (2010)

    Article  Google Scholar 

  3. Missana, T., Alonso, U., Scheinost, A.C., Granizo, N., Garcia-Gutierrez, M.: Selenite retention by nanocrystalline magnetite: role of adsorption, reduction and dissolution/co-precipitation processes. Geochim. Cosmochim. Acta 73(20), 6205–6217 (2009)

    Article  Google Scholar 

  4. Nogueira, C.W., Rocha, J.B.T.: Toxicology and pharmacology of selenium: emphasis on synthetic organoSe compounds. Arch. Toxicol. 85(11), 1313–1359 (2011)

    Article  Google Scholar 

  5. Kolbe, F., Weiss, H., Morgenstern, P., Wennrich, R., Lorenz, W., Schurk, K., Stanjek, H., Daus, B.: Sorption of aqueous antimony and arsenic species onto akaganeite. J. Colloid Interface Sci. 357(2), 460–465 (2011)

    Article  Google Scholar 

  6. Jung, C.H., Matsuto, T., Tanaka, N., Okada, T.: Metal distribution in incineration residues of municipal solid waste (MSW) in Japan. Waste Manag. 24(4), 381–391 (2004)

    Article  Google Scholar 

  7. Paoletti, F., Sirini, P., Seifert, H., Vehlow, J.: Fate of antimony in municipal solid waste incineration. Chemosphere 42(5–7), 533–543 (2001)

    Article  Google Scholar 

  8. Paoletti, F.: Behaviour of oxyanions forming heavy metals in municipal solid waste incineration. Ph.D. Thesis, Univ. Stuttgart (2002)

  9. Vaclavikova, M., Stefusova, K., Ivanicova, L., Jakabsky, S., Gallios, G.P.: Magnetic zeolite as arsenic sorbent. In: Vaclavikova, M., Vitale, K., Gallios, G.P., Ivanicova, L. (eds.) Water Treatment Technologies for the Removal of High-Toxicity Pollutants. NATO Science for Peace and Security Series C-Environmental Security, pp. 51–59. Springer, Dordrecht (2010)

    Google Scholar 

  10. Petrova, T.M., Fachikov, L., Hristov, J.: The magnetite as adsorbent for some hazardous species from aqueous solutions: a review. Int. Rev. Chem. Eng. 3(2), 134–152 (2011)

    Google Scholar 

  11. Mayo, J.T., Yavuz, C., Yean, S., Cong, L., Shipley, H., Yu, W., Falkner, J., Kan, A., Tomson, M., Colvin, V.L.: The effect of nanocrystalline magnetite size on arsenic removal. Sci. Technol. Adv. Mater. 8(1–2), 71–75 (2007)

    Article  Google Scholar 

  12. Gallios, G.P., Vaclavikova, M.: Removal of chromium (VI) from water streams: a thermodynamic study. Environ. Chem. Lett. 6(4), 235–240 (2008)

    Article  Google Scholar 

  13. Loyo, R.L.D., Nikitenko, S.I., Scheinost, A.C., Simonoff, M.: Immobilization of selenite on Fe3O4 and Fe/Fe3C ultrasmall particles. Environ. Sci. Technol. 42(7), 2451–2456 (2008)

    Article  Google Scholar 

  14. Scheinost, A.C., Charlet, L.: Selenite reduction by mackinawite, magnetite and siderite: XAS characterization of nanosized redox products. Environ. Sci. Technol. 42(6), 1984–1989 (2008)

    Article  Google Scholar 

  15. Leuz, A.K., Johnson, C.A.R.: Oxidation of Sb(III) to Sb(V) by O-2 and H2O2 in aqueous solutions. Geochim. Cosmochim. Acta 69(5), 1165–1172 (2005)

    Article  Google Scholar 

  16. Kirsch, R., Scheinost, A.C., Rossberg, A., Banerjee, D., Charlet, L.: Reduction of antimony by nano-particulate magnetite and mackinawite. Mineral. Mag. 72(1), 185–189 (2008)

    Article  Google Scholar 

  17. Mulugeta, M., Wibetoe, G., Engelsen, C.J., Lund, W.: Speciation analysis of As, Sb and Se in leachates of cementitious construction materials using selective solid phase extraction and ICP-MS. J. Anal. At. Spectrom. 25(2), 169–177 (2010)

    Article  Google Scholar 

  18. Vaclavikova, M., Jakabsky, S., Hredzak, S.: Magnetic Nanoscale Particles as Sorbents for Removal of Heavy Metal Ions, Vol. 169. Nanoengineered Nanofibrous Materials. Springer, Dordrecht (2004)

    Google Scholar 

  19. Verbinnen, B., Block, C., Hannes, D., Lievens, P., Vaclavikova, M., Stefusova, K., Gallios, G., Vandecasteele, C.: Removal of molybdate anions from water by adsorption on zeolite-supported magnetite. Water Environ. Res. 84(9), 753–760 (2012)

    Article  Google Scholar 

  20. Davis, J.A., James, R.O., Leckie, J.O.: Surface ionization and complexation at oxide-water interface.1. Computation of electrical double-layer properties in simple electrolytes. J. Colloid Interface Sci. 63(3), 480–499 (1978)

    Article  Google Scholar 

  21. Davis, J.A., Leckie, J.O.: Surface-ionization adnd complexation at the oxide-water interface.3. Adsorption of anions. J. Colloid Interface Sci. 74(1), 32–43 (1980)

    Article  Google Scholar 

  22. Hayes, K.F., Leckie, J.O.: Mechanism of lead-ion adsorption at the goethite-water interface. ACS Symp. Ser. 323, 114–141 (1986)

    Article  Google Scholar 

  23. Sverjensky, D.A.: Interpretation and prediction of triple-layer model capacitances and the structure of the oxide-electrolyte-water interface. Geochim. Cosmochim. Acta 65(21), 3643–3655 (2001)

    Article  Google Scholar 

  24. Mansour, C., Lefevre, G., Pavageau, E.M., Catalette, H., Fedoroff, M., Zanna, S.: Sorption of sulphate ions onto magnetite. J. Colloid Interface Sci. 331(1), 77–82 (2009)

    Article  Google Scholar 

  25. Jordan, N., Lomenech, C., Marmier, N., Giffaut, E., Ehrhardt, J.J.: Sorption of selenium(IV) onto magnetite in the presence of silicic acid. J. Colloid Interface Sci. 329(1), 17–23 (2009)

    Article  Google Scholar 

  26. Martinez, M., Gimenez, J., de Pablo, J., Rovira, M., Duro, L.: Sorption of selenium(IV) and selenium(VI) onto magnetite. Appl. Surf. Sci. 252(10), 3767–3773 (2006)

    Article  Google Scholar 

  27. Kim, S.S., Min, J.H., Lee, J.K., Baik, M.H., Choi, J.W., Shin, H.S.: Effects of pH and anions on the sorption of selenium ions onto magnetite. J. Environ. Radioact. 104, 1–6 (2012)

    Article  Google Scholar 

  28. Philippini, V., Naveau, A., Catalette, H., Leclercq, S.: Sorption of silicon on magnetite and other corrosion products of iron. J. Nucl. Mater. 348(1–2), 60–69 (2006)

    Article  Google Scholar 

  29. Balistrieri, L.S., Chao, T.T.: Adsorption of selenium by amorphous iron oxyhydroxyde and manganese-dioxide. Geochim. Cosmochim. Acta 54(3), 739–751 (1990)

    Article  Google Scholar 

  30. Hayes, K.F., Leckie, J.O.: Modeling ionic-strength effects on cation adsorption at hydrous oxide-solution interfaces. J. Colloid Interface Sci. 115(2), 564–572 (1987)

    Article  Google Scholar 

  31. Zhang, P.C., Sparks, D.L.: Kinetics of selenate and selenite adsorption desorption at the goethite water interface. Environ. Sci. Technol. 24(12), 1848–1856 (1990)

    Article  Google Scholar 

  32. Rovira, M., Gimenez, J., Martinez, M., Martinez-Llado, X., de Pablo, J., Marti, V., Duro, L.: Sorption of selenium(IV) and selenium(VI) onto natural iron oxides: goethite and hematite. J. Hazard. Mater. 150(2), 279–284 (2008)

    Article  Google Scholar 

  33. Guo, X.J., Wu, Z.J., He, M.C.: Removal of antimony(V) and antimony(III) from drinking water by coagulation-flocculation-sedimentation (CFS). Water Res. 43(17), 4327–4335 (2009)

    Article  Google Scholar 

  34. Gustafsson, J.P.: Modelling molybdate and tungstate adsorption to ferrihydrite. Chem. Geol. 200(1–2), 105–115 (2003)

    Article  Google Scholar 

  35. Ho, Y.S., McKay, G.: Pseudo-second order model for sorption processes. Process Biochem. 34(5), 451–465 (1999)

    Article  Google Scholar 

  36. El-Khaiary, M.I., Malash, G.F., Ho, Y.S.: On the use of linearized pseudo-second-order kinetic equations for modeling adsorption systems. Desalination 257(1–3), 93–101 (2010)

    Article  Google Scholar 

  37. Masel, R.I.: Principles of Adsorption and Reaction on Solid Surfaces. Wiley-Interscience, New York (1996)

    Google Scholar 

  38. Leuz, A.K., Monch, H., Johnson, C.A.: Sorption of Sb(III) and Sb(V) to goethite: influence on Sb(III) oxidation and mobilization. Environ. Sci. Technol. 40(23), 7277–7282 (2006)

    Article  Google Scholar 

  39. Frau, F., Addari, D., Atzei, D., Biddau, R., Cidu, R., Rossi, A.: Influence of major anions on As(V) adsorption by synthetic 2-line ferrihydrite. Kinetic investigation and XPS study of the competitive effect of bicarbonate. Water Air Soil Pollut. 205(1–4), 25–41 (2010)

    Article  Google Scholar 

  40. Lievens, P., Block, C., Cornelis, G., Vandecasteele, C., De Voogd, J.C., Van Brecht, A.: Mo, Sb and Se removal from scrubber effluent of a waste incinerator. In: Vaclavikova, M., Vitale, K., Gallios, G.P., Ivanicova, L. (eds.) Water Treatment Technologies for the Removal of High-Toxicity Pollutants. NATO Science for Peace and Security Series C-Environmental Security, pp. 193–202. Springer, Dordrecht (2010)

    Google Scholar 

Download references

Acknowledgments

Miroslava Vaclavikova (Institute of Geotechnics, Slovakia) and Georgios Gallios (Aristotle University of Thessaloniki, Greece) are acknowledged for provision of the adsorbent. Sander Van Gompel and Stijn Van Ostaeyen are greatly acknowledged for their preparatory work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bram Verbinnen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verbinnen, B., Block, C., Lievens, P. et al. Simultaneous Removal of Molybdenum, Antimony and Selenium Oxyanions from Wastewater by Adsorption on Supported Magnetite. Waste Biomass Valor 4, 635–645 (2013). https://doi.org/10.1007/s12649-013-9200-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-013-9200-8

Keywords

Navigation