Skip to main content
Log in

The Selective Dissolution Technique as Initial Step for Polystyrene Recycling

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Expanded (EPS)or extruded (XPS) polystyrene are packaging or insulation materials with an increasing range of applications, so the enormous volume of wastes generated makes their recycling an urgent task. The general purpose of PS foams recycling is the recovery of a more compact polymer material with minimal degradation of the original polymer chains. In this way the shrinkage and further solubilisation with terpenic solvents can be one of the most efficient and cheap alternatives for the recycling of PS foams. In this work, molecular weight influence of PS, in the range between monomer (104.1 Da) and high molecular weight polymer (108 Da) has been evaluated, confirming experimentally (192,000–350,000 Da) that is not the most relevant variable unlike other polymer properties (cristallinity or polidispersity). Critical concentration and temperature have been calculated to establish the operation condition limits, and it was confirmed that at room temperature and at experimental maximum solubility, polymer precipitation does not carried out. Finally, PS pellets were applied to commercial samples (extruded and expanded polystyrene) obtaining similar results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Brithish Plastic Federation. Plastic waste management. http://www.bpf.co.uk/sustainability/plastics_recycling.aspx

  2. Salamone, J.C.: Polymeric Materials Encyclopedia: A-B, vol. 1. CRC Press, Boca Raton (1996)

    Google Scholar 

  3. Loultcheva, M.K., Proietto, M., Jilov, N., Mantia, F.P.L.: Recycling of high density polyethylene containers. Polym. Degrad. Stab. 57(1), 77–81 (1997)

    Article  Google Scholar 

  4. Tiganis, B.E., Shanks, R.A., Yu, L.: Effects of processing on the microstructure, melting behavior, and equilibrium melting temperature of polypropylene. J. Appl. Polym. Sci. 59(4), 663–671 (1996)

    Article  Google Scholar 

  5. Abbas, K.B.: Reprocessing of thermoplastics—2. Polycarbonate. Polym. Eng. Sci. 20(5), 376–382 (1980)

    Article  Google Scholar 

  6. Arzak, A., Eguiazabal, J.I., Nazabal, J.: Effect of processing conditions on the properties of poly(ether ether ketone). Plast. Rubber Compos. Process. Appl. 17(3), 165–169 (1992)

    Google Scholar 

  7. Bastida, S., Eguiazábal, J.I., Nazábal, J.: Structure and physical properties of reprocessed poly(ether imide). J. Appl. Polym. Sci. 63(12), 1601–1607 (1997)

    Article  Google Scholar 

  8. Kalfoglou, N.K., Chaffey, C.E.: Effects of extrusion on the structure and properties of high-impact polystyrene. Polym. Eng. Sci. 19(8), 552–557 (1979)

    Article  Google Scholar 

  9. Eriksson, P.A., Albertsson, A.C., Boydell, P., Eriksson, K., Manson, J.A.E.: Reprocessing of fiberglass reinforced polyamide 66: influence on short term properties. Polym. Compos. 17(6), 823–829 (1996)

    Article  Google Scholar 

  10. Eriksson, P.A., Albertsson, A.C., Boydell, P., Prautzsch, G., Månson, J.A.E.: Prediction of mechanical properties of recycled fiberglass reinforced polyamide 66. Polym. Compos. 17(6), 830–839 (1996)

    Article  Google Scholar 

  11. Brandrup, J.: Recycling and recovery of plastics. Hanser Publishers, Munich (1996)

    Google Scholar 

  12. Dekker, M. J.: J. Macromol. Sci. Phys. 34 (1995)

  13. Association of Plastics Manufacturer: Plásticos, aprovechamiento óptimo del reciclaje y de los recursos. Rev. Plast. Mod. (77), 268–270 (1999)

  14. Poulakis, J.G., Papaspyrides, C.D.: Recycling of polypropylene by the dissolution/reprecipitation technique: I. A model study. Resour. Conserv. Recycl. 20(1), 31–41 (1997)

    Article  Google Scholar 

  15. Drain, K.F., Murphy, W.R., Otterburn, M.S.: A solvent technique for the recycling of polypropylene. Degradation on recycling. Conserv. Recycl. 6(3), 123–137 (1983)

    Article  Google Scholar 

  16. Zhang, Y., Mallapragada, S.K., Narasimhan, B.: Dissolution of waste plastics in biodiesel. Polym. Eng. Sci. 50(5), 863–870 (2010). doi:10.1002/pen.21598

    Article  Google Scholar 

  17. Kodera, Y., Ishihara, Y., Kuroki, T., Ozaki, S.: Feedstock recycling of plastics. In: Müller-Hagedorn, M., Bockhorn, H. (eds.) Solvo-Cycle Process: AIST’s New Recycling Process for Used Plastic Foam Using Plastics-Derived Solvent, pp. 217–222. Karlshrue (2005)

  18. Noguchi, T., Miyashita, M., Lnagaki, Y., Watanabe, H.: A new recycling system for expanded polystyrene using a natural solvent. Part 1. A new recycling technique. Packaging Technol. Sci. 11(1), 19–27 (1998)

    Article  Google Scholar 

  19. Hattori, K., Naito, S., Yamauchi, K., Nakatani, H., Yoshida, T., Saito, S., Aoyama, M., Miyakoshi, T.: Solubilization of polystyrene into monoterpenes. Adv. Polym. Technol. 27(1), 35–39 (2008). doi:10.1002/adv.20115

    Article  Google Scholar 

  20. García, M.T., Duque, G., Gracia, I., De Lucas, A., Rodríguez, J.F.: Recycling extruded polystyrene by dissolution with suitable solvents. J. Mater. Cycles Waste Manag. 11(1), 2–5 (2009). doi:10.1007/s10163-008-0210-8

    Article  Google Scholar 

  21. García, M.T., Gracia, I., Duque, G., Lucas, A.d., Rodríguez, J.F.: Study of the solubility and stability of polystyrene wastes in a dissolution recycling process. Waste Manag. (Oxford) 29(6), 1814–1818 (2009). doi:10.1016/j.wasman.2009.01.001

    Article  Google Scholar 

  22. García, M.T., De Lucas, A., Gracia, I., Rodríguez, J.F.: Expanded Polystyrene Wastes Recycling by Using Natural Solvents and Supercritical CO2 for Solvent Recovery, pp. 1821–1827. REWAS 2008: Global Symposium on Recycling, Waste Treatment and Clean Technologies (2008)

  23. Noguchi, T., Lnagaki, Y., Miyashita, M., Watanabe, H.: A new recycling system for expanded polystyrene using a natural solvent. Part 2. Development of a prototype production system. Packaging Technol. Sci. 11(1), 29–37 (1998)

    Article  Google Scholar 

  24. Noguchi, T., Tomita, H., Satake, K., Watanabe, H.: A new recycling system for expanded polystyrene using a natural solvent. Part 3. Life cycle assessment. Packaging Technol. Sci. 11(1), 39–44 (1998)

    Article  Google Scholar 

  25. Holten-Andersen, J., Eng, K.: Activity coefficients in polymer solutions. Prog. Org. Coat. 16(1), 77–97 (1988)

    Article  Google Scholar 

  26. Hansen, C.M.: Hansen solubility parameters: a user’s handbook. CRC Press, Boca Raton (2000)

    Google Scholar 

  27. Lindvig, T., Michelsen, M.L., Kontogeorgis, G.M.: A Flory–Huggins model based on the Hansen solubility parameters. Fluid Phase Equilib. 203(1–2), 247–260 (2002)

    Article  Google Scholar 

  28. Cooper, W.J., Krasicky, P.D., Rodriguez, F.: Effects of molecular weight and plasticization on dissolution rates of thin polymer films. Polymer 26(7), 1069–1072 (1985)

    Article  Google Scholar 

  29. Ueberreiter, K: The solution process. In: Crank, J., Park, G. S. (eds.) Diffusion in Polymers, pp. 219–257. Academic Press, New York (1968)

  30. Poling, B.E., Prausnitz, J.M., O’Connell, J.P.: The Properties of Gases and Liquids. McGraw-Hill (2001)

  31. Papanu, J.S., Hess, D.W., Soane, D.S., Bell, A.T.: Dissolution of thin poly(methyl methacrylate) films in ketones, binary ketone/alcohol mixtures, and hydroxy ketones. J. Electrochem. Soc. 136(10), 3077–3083 (1989)

    Article  Google Scholar 

  32. Okubo, M., Ahmad, H.: Synthesis of temperature-sensitive submicron-size composite polymer particles. Colloid Polym. Sci. 273(9), 817–821 (1995)

    Article  Google Scholar 

  33. Flory, P.J.: Thermodynamics of high polymer solutions. J. Chem. Phys. 9(8), 660–661 (1941)

    Article  Google Scholar 

  34. Huggins, M.L.: Solutions of long chain compounds. J. Chem. Phys. 9(5), 440 (1941)

    Article  Google Scholar 

  35. Eastwood, E., Viswanathan, S., O’Brien, C.P., Kumar, D., Dadmun, M.D.: Methods to improve the properties of polymer mixtures: optimizing intermolecular interactions and compatibilization. Polymer 46(12), 3957–3970 (2005). doi:10.1016/j.polymer.2005.02.073

    Article  Google Scholar 

  36. Icoz, D.Z., Kokini, J.L.: Examination of the validity of the Flory–Huggins solution theory in terms of miscibility in dextran systems. Carbohydr. Polym. 68(1), 59–67 (2007)

    Article  Google Scholar 

  37. Ovejero, G., Pérez, P., Romero, M.D., Guzmán, I., Díez, E.: Solubility and Flory Huggins parameters of SBES, poly(styrene-b-butene/ethylene-b-styrene) triblock copolymer, determined by intrinsic viscosity. Eur. Polym. J. 43(4), 1444–1449 (2007)

    Article  Google Scholar 

  38. Kozłowska, M.K., Domańska, U., Lempert, M., Rogalski, M.: Determination of thermodynamic properties of isotactic poly(1-butene) at infinite dilution using density and inverse gas chromatography. J. Chromatogr. A 1068(2), 297–305 (2005)

    Article  Google Scholar 

  39. Gharagheizi, F., Sattari, M.: Prediction of the θ(UCST) of polymer solutions: a quantitative structure-property relationship study. Ind. Eng. Chem. Res. 48(19), 9054–9060 (2009)

    Article  Google Scholar 

  40. Mauri, A., Consonni, V., Pavan, M., Todeschini, R.: DRAGON software: an easy approach to molecular descriptor calculations. Match 56(2), 237–248 (2006)

    MATH  Google Scholar 

  41. Seymour, R.B., Stahl, G.A., Society, A.C.: Macromolecular Solutions: Solvent-Property Relationships in Polymers. Pergamon Press, Oxford (1982)

    Google Scholar 

  42. Grulke, E.A.: Polymer Handbook. Wiley, London (2012)

    Google Scholar 

  43. Barton, A.F.M.: CRC Handbook of Polymer-Liquid Interaction Parameters and Solubility Parameters. CRC Press, Boca Raton (1990)

    Google Scholar 

  44. Barton, A.F.M.: CRC Handbook of Solubility Parameters and Other Cohesion Parameters. CRC Press, Boca Raton (1991)

    Google Scholar 

  45. Vetere, A.: Empirical method to correlate and to predict the vapor-liquid equilibrium and liquid–liquid equilibrium of binary amorpous polymer solutions. Ind. Eng. Chem. Res. 37(7), 2864–2872 (1998)

    Article  Google Scholar 

  46. Vetere, A.: An empirical method to predict the liquid–liquid equilibria of binary polymer systems. Ind. Eng. Chem. Res. 37(11), 4463–4469 (1998)

    Article  Google Scholar 

  47. Billmeyer, F.W.: Textbook of Polymer Science. Wiley, London (1984)

    Google Scholar 

  48. Imre, A.R., Van Hook, W.A.: The effect of branching of alkanes on the liquid–liquid equilibrium of oligostyrene/alkane systems. Fluid Phase Equilib. 187–188, 363–372 (2001)

    Article  Google Scholar 

Download references

Acknowledgments

Financial support from Consejeria de Educacion y Ciencia (PBI06-0139. PBI08-0248-9341) Junta de Comunidades de Castilla-La Mancha. Spain and Tecnove-Fiberglass is gratefully acknowledged. We also acknowledge Spanish MEPSYD to provide a FPU grant for the PhD student.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan F. Rodríguez.

Glossary

Ω 1

Activity coefficient at infinite dilution

α12

Binary interaction parameter

ΔHm

Enthalpy of mixing

χ

Flory–Huggins interaction parameter

R

Ideal gas constant

LCST

Lower critical solution temperature

V

Molar volume

MW1

Molecular weight of the solvent

MW2

Molecular weight of the polymer

T

Temperature

UCST

Upper critical solution temperature

ϕ1

Volume fraction of the solvent

ϕ2

Volume fraction of the polymer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutiérrez, C., García, M.T., Gracia, I. et al. The Selective Dissolution Technique as Initial Step for Polystyrene Recycling. Waste Biomass Valor 4, 29–36 (2013). https://doi.org/10.1007/s12649-012-9131-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-012-9131-9

Keywords

Navigation