Skip to main content
Log in

Microwave Synthesis and Antibacterial Activity of 1,4-Bis (5-aryl-1,3,4-oxadiazole-2-yl) Benzene Derivatives from Terephthalic Dihydrazide Obtained Through Aminolysis of PET Bottle Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Recycling of waste PET bottles was attempted using aminolytic depolymerization with hydrazine monohydrate in the presence of NiCl2 and MgCl2 as catalysts, under reflux. The reaction was carried out in a domestic microwave oven of 700 W with suitable modification. Terephthalic dihydrazide (TPDH) was obtained in only 10 min as a pure product with 86 % yield as compared to 4 h by conventional heating. Various 1,4-bis(5-aryl-1,3,4-oxadiazole-2-yl) benzene (2af) derivatives were prepared from TPDH by treatment with appropriate aromatic acids in the presence of phosphoryl chloride and thionyl chloride, under microwave irradiation, which required only 20 min. The structures of the synthesized compounds were confirmed by FTIR, melting point and NMR. These compounds were found to possess antibacterial activity comparable to commercial products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1

Similar content being viewed by others

References

  1. Ward, S., Jones, K.M., Marbrow, R.A.: In: Hoyle, W., Karsa, D.R. (eds.) Chemical Aspects of Plastics Recycling, p. 79. The Royal Society of Chemistry, Cambridge (1997)

  2. La Mantia, F.P., Vincy, M.: Recycling of PET. Polym. Degrad. Stab. 45, 121–125 (1994)

    Article  Google Scholar 

  3. La Mantia, F.P., Vincy, M.: Recycling of carbonated beverages bottles. Polym. Recycl. 1, 33–37 (1994)

    Google Scholar 

  4. Ghaemy, M., Mossaddegh, K.: Depolymerization of poly (ethylene terephthalate) fibre wastes using ethylene glycol. Polym. Degrad. Stab. 90, 570–576 (2005)

    Article  Google Scholar 

  5. Pardal, F., Tersac, G.: Comparative reactivity of glycols in PET glycolysis. Polym. Degrad. Stab. 91, 2567–2578 (2006)

    Article  Google Scholar 

  6. Goto, M., Koyamoto, H., Kodama, A., Hirose, T., Nagaoka, S., McCoy, B.J.: Degradation kinetics of polyethylene terephthalate in supercritical methanol. AIChE J. 48, 136–144 (2002)

    Article  Google Scholar 

  7. Genta, M., Iwaya, T., Sasaki, M., Goto, M., Hirose, T.: Depolymerization mechanism of poly (ethylene terephthalate) in supercritical methanol. Ind. Eng. Chem. Res. 44, 3894–3900 (2005)

    Article  Google Scholar 

  8. Carta, D., Cao, G., D’Angeli, C.: Chemical recycling of poly(ethylene terephthalate) (PET) by hydrolysis and glycolysis. Environ. Sci. Pollut. 10, 390–394 (2003)

    Article  Google Scholar 

  9. Mancini, S., Donnini, Z.M.: Post consumer PET depolymerization by acid hydrolysis. Polym. Plast. Technol. Eng. 46, 135–144 (2007)

    Article  Google Scholar 

  10. Spychaj, T., Fabrycy, E., Spychaj, S., Kacperski, M.: Aminolysis and aminoglycolysis of waste poly (ethylene terephthalate). J. Mater. Cycles Waste Manag. 3, 24–31 (2001)

    Google Scholar 

  11. Goje, A.S., Thakur, S.A., Patil, T.M., Mishra, S.: Glycolytic aminolysis of poly (ethylene terephthalate) waste for recovery of value-added comonomer at atmospheric pressure. J. Appl. Polym. Sci. 90, 3437–3444 (2003)

    Article  Google Scholar 

  12. Soni, R.K., Singh, S.: Synthesis and characterization of terephthalamides from poly (ethylene terephthalate) waste. J. Appl. Polym. Sci. 96, 1515–1528 (2005)

    Article  Google Scholar 

  13. Goje, A.S., Thakur, S.A., Diware, V.R., Chauhan, Y.P., Mishra, S.: Aminolysis of poly (ethylene terephthalate) waste for recovery of value added comonomeric product. Polym. Plast. Technol. Eng. 43, 407–426 (2004)

    Article  Google Scholar 

  14. Fabrycy, E., Leistner, A., Spychaj, T.: New epoxy resin hardeners from PET scrap. Adhesion 44, 35–39 (2000)

    Google Scholar 

  15. Shukla, S.R., Harad, A.M.: Aminolysis of polyethylene terephthalate waste. Polym. Degrad. Stab. 91, 1850–1854 (2006)

    Article  Google Scholar 

  16. Pingale, N.D., Shukla, S.R.: Microwave-assisted aminolytic depolymerization of PET waste. Eur. Polym. J. 45, 2695–2700 (2009)

    Article  Google Scholar 

  17. Parab, Y.S., Pingale, N.D., Shukla, S.R.: Aminolytic depolymerization of poly (ethylene terephthalate) bottle waste by conventional and microwave irradiation heating. J. Appl. Polym. Sci. 125, 1103–1107 (2012)

    Article  Google Scholar 

  18. Shah, R.V., Shukla, S.R.: Effective aminolytic depolymerization of poly (ethylene terephthalate) waste and synthesis of bis-oxazoline therefrom. J. Appl. Polym. Sci. (2011, accepted). doi:10.1002/app.36649

  19. Jain, A., Soni, R.K.: Spectroscopic investigation of end products obtained by ammonolysis of poly (ethylene terephthalate) waste in the presence of zinc acetate as a catalyst. J. Polym. Res. 14, 475–481 (2007)

    Article  Google Scholar 

  20. Kappe, C.O.: Controlled microwave heating in modern organic synthesis. Angew. Chem. Int. Ed. 43, 6250–6284 (2004)

    Article  Google Scholar 

  21. Kappe, C.O.: High-speed combinatorial synthetics utilizing microwave irradiation. Curr. Opin. Chem. Biol. 6, 314–320 (2002)

    Article  Google Scholar 

  22. Santagada, V., Perissutti, E., Caliendo, G.: The application of microwave irradiation as new convenient synthetic procedure in drug discovery. Curr. Med. Chem. 9, 1251–1283 (2002)

    Article  Google Scholar 

  23. Dzierba, C.D., Combs, A.P.: Microwave-assisted chemistry as a tool for drug discovery. Annu. Rep. Med. Chem. 37, 247–256 (2002)

    Article  Google Scholar 

  24. Lidstrom, P., Tierney, J., Wathey, B., Westman, J.: Microwave assisted organic synthesis—a review. Tetrahedron 57, 9225–9283 (2001)

    Article  Google Scholar 

  25. Bogdal, D., Penczek, P., Pielichowski, J., Prociak, A.: Microwave assisted synthesis, crosslinking, and processing of polymeric materials. Adv. Polym. Sci. 163, 193–263 (2003)

    Google Scholar 

  26. Husain, A., Ajmal, M.: Synthesis of novel 1,3,4- oxadiazole derivatives and their biological properties. Acta Pharm. 59, 223–233 (2009)

    Article  Google Scholar 

  27. Pingale, N.D., Shukla, S.R.: Microwave assisted ecofriendly recycling of poly (ethylene terephthalate) bottle waste. Eur. Polym. J. 44, 4151–4156 (2008)

    Article  Google Scholar 

  28. Palekar, V.S., Damle, A.J., Shukla, S.R.: Synthesis and antibacterial activity of some novel bis-1,2,4-triazolo [3,4-b]-1,3,4-thiadiazoles and bis-4-thiazolidinone derivatives from terephthalic dihydrazide. Eur. J. Med. Chem. 44, 5112–5116 (2009)

    Article  Google Scholar 

  29. Perreux, L., Loupy, A.: A tentative rationalization of microwave effects in organic synthesis according to the reaction medium, and mechanistic considerations. Tetrahedron 57, 9199–9223 (2001)

    Article  Google Scholar 

  30. Rekkas, S.A., Rodios, N.A., Alexandrou, N.E.: An improved synthesis of 1,3- and 1,4-bis[5-aryl-1,3,4-oxadiazol-2-yl]benzenes via oxidation of bis-aroylhydrazones of iso-and terephthalaldehyde with lead(IV) acetate. Synthesis 5, 411–413 (1986)

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support received from the Council of Scientific and Industrial Research (CSIR), New Delhi, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjeev R. Shukla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Figure 1

Spectra of Terephthalic dihydrazide (TPDH) (a) FTIR (b) proton NMR (TIFF 662 kb)

Figure 2

Spectra of 1, 4-bis (5- phenyl- 1, 3, 4- oxadiazol- 2- yl) benzene (a) FTIR (b) proton NMR (TIFF 590 kb)

Figure 3

Spectra of 1, 4- bis (5- (4- nitrophenyl) -1, 3, 4- oxadiazol- 2- yl) benzene, (a) FTIR (b) proton NMR (TIFF 467 kb)

Figure 4

Spectra of 1, 4- bis (5- (4- chlorophenyl) -1, 3, 4- oxadiazol- 2- yl) benzene (a) FTIR (b) proton NMR (TIFF 478 kb)

Figure 5

Spectra of 1, 4- bis (5- (4- hydroxyphenyl) - 1, 3, 4- oxadiazol- 2- yl) benzene (a) FTIR (b) proton NMR (TIFF 536 kb)

Figure 6

Spectra of 1, 4- bis (5- (4- methoxyphenyl) - 1, 3, 4- oxadiazol- 2- yl) benzene (a) FTIR (b) proton NMR (TIFF 611 kb)

Figure 7

Spectra of 1, 4- bis (5- (4- aminophenyl) - 1, 3, 4- oxadiazol- 2- yl) benzene (a) FTIR (b) proton NMR (TIFF 532 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Parab, Y.S., Shukla, S.R. Microwave Synthesis and Antibacterial Activity of 1,4-Bis (5-aryl-1,3,4-oxadiazole-2-yl) Benzene Derivatives from Terephthalic Dihydrazide Obtained Through Aminolysis of PET Bottle Waste. Waste Biomass Valor 4, 23–27 (2013). https://doi.org/10.1007/s12649-012-9128-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-012-9128-4

Keywords

Navigation