Skip to main content
Log in

Optimization of Reaction Conditions for Preparing Carboxymethyl Cellulose from Corn Cobic Agricultural Waste

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Carboxymethyl cellulose (CMC) is an important industrial polymer with a wide range of applications in flocculation, drag reduction, detergents, textiles, paper, foods, drugs, and oil well drilling operation. The various properties of CMC depend upon three factors: molecular weight of the polymer, average number of carboxyl content per anhydroglucose unit (AGU) i.e. degree of substitution and also on the distribution of carboxyl substituent’s along the polymer chains. The cellulose extracted from corn cobic lignocellulosic waste biomass was converted to CMC by etherification process using sodium hydroxide and monochloroacetic acid (MCA) under heterogeneous condition. The carboxymethylation reaction was optimized against the NaOH concentration, monochloroacetic acid concentration, reaction temperature and time. The degree of substitution (DS) was analyzed with respect to the reaction conditions using chemical method. The produced CMC was characterized by using Fourier transform infrared spectra and X-ray diffractogram. The optimized conditions to yield CMC with high DS of 1.18 are; concentration of aqueous NaOH 3.25 mol/AGU, 25 % (w/v); concentration of MCA, 2.4 mol/AGU; reaction time, 3.0 h and temperature, 60 °C with isopropyl alcohol as the supporting solvent medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Barkalow, D.G., Young, R.A.: Cellulose derivatives derived from pulp and paper mill sludge. J. Wood Chem. Technol. 5, 293–312 (1985)

    Article  Google Scholar 

  2. Klemm, D., Heublein, B., Fink, H.-P., Bohn, A.: Cellulose: fascinating biopolymer and sustainable raw material. Angew. Chem. 44, 3358–3393 (2005)

    Article  Google Scholar 

  3. Heinze, T., Koschella, A.: Carboxymethyl ethers of cellulose and starch-a review. Macromol. Symp. 223, 130–139 (2005)

    Article  Google Scholar 

  4. Feddersen, R.L., Thorp, S.N.: Sodium carboxymethylcellulose. In: Whistler, R.L., BeMiller, J.N. (eds.) Industrial Gums and their Derivatives, pp. 537–578. Academic Press, New York (1993)

    Chapter  Google Scholar 

  5. Sandford, P.A., Baird, J.: Industrial utilization of polysaccharides. In: Aspinall, G.O. (ed.) The Polysaccharides, pp. 411–490. Academic Press, Reading MA (1983)

    Google Scholar 

  6. Keller, J.D.: Sodium carboxymethylcellulose (CMC). In: Gliksman, M. (ed.) Food Hydrocolloids, Vol. 3, pp. 45–104. Boca Raton, FL: CRC Press (1986)

  7. Heinze, T., Pfeiffer, K.: Studies on the synthesis and characterization of carboxymethylcellulose. Die Angewandte Makromolekulare Chemie 266, 37–45 (1999)

    Article  Google Scholar 

  8. Ho, F.F.-L., Klosiewicz, D.W.: Proton nuclear magnetic resonance spectrometry for determination of substituents and their distribution in carboxymethylcellulose. Anal. Chem. 52, 913–916 (1980)

    Article  Google Scholar 

  9. Reuben, J., Conner, H.T.: Analysis of the carbon-13 NMR spectrum of hydrolyzed O-(carboxymethyl)cellulose: monomer composition and substitution patterns. Carbohydr. Res. 115, 1–13 (1983)

    Article  Google Scholar 

  10. Barba, C., Montane, D., Rinaudo, M., Farriol, X.: Synthesis and characterization of carboxymethylcelluloses (CMC) from non-wood fibers I. Accessibility of cellulose fibers and CMC synthesis. Cellulose 9, 319–326 (2002)

    Article  Google Scholar 

  11. Guo, Z., Xing, R., Liu, S., Zhong, Z., Li, P.: Synthesis and hydroxyl radicals scavenging activity of quaternized carboxymethyl chitosan. Carbohydr. Polym. 73, 173–177 (2008)

    Article  Google Scholar 

  12. He, X., Wu, S., Fua, D., Nia, J.: Preparation of sodium carboxymethyl cellulose from paper sludge. J. Chem. Technol. Biotechnol. 84, 427–434 (2009)

    Article  Google Scholar 

  13. Togrul, H., Arslan, N.: Production of carboxymethyl cellulose from sugar beet pulp cellulose and rheological behaviour of carboxymethyl cellulose. Carbohydr. Polym. 54, 73–82 (2003)

    Article  Google Scholar 

  14. Ramos, L.A., Frollini, E., Heinze, Th.: Carboxymethylation of cellulose in the new solvent dimethyl sulfoxide/tetrabutylammonium fluoride. Carbohydr. Polym. 60, 259–267 (2005)

    Article  Google Scholar 

  15. Kirk, R.E., Othmer, D.F.: Cellulose Encyclopedia of Chemical Technology, Vol. 4, pp. 593–683. Wiley, New York (1997)

  16. Methacanon, P., Chaikumpollert, O., Thavorniti, P., Suchiva, K.: Hemicellulosic polymer from Vetiver grass and its physicochemical properties. Carbohydr. Polym. 54, 335–342 (2003)

    Article  Google Scholar 

  17. Dolz, M., Jiménez, J., Hernández, M.J., Delegido, J., Casanovas, A.: Flow and thixotropy of non-contaminating oil drilling fluids formulated with bentonite and sodium carboxymethyl cellulose. J. Petroleum Sci. Eng. 57, 294–302 (2007)

    Article  Google Scholar 

  18. Fijan, R., Basile, M., Turk, S.S., Agar, Z.M., Zigon, M., Lapasin, R.: A study of rheological and molecular weight properties of recycled polysaccharides used as thickeners in textile printing. Carbohydr. Polym. 76, 8–16 (2009)

    Article  Google Scholar 

  19. Mohanty, A.K., Simmons, C.R., Wiener, M.C.: Inhibition of tobacco etch virus protease activity by detergents. Protein Exp Purif 27, 109–114 (2003)

    Article  Google Scholar 

  20. Amin, M.C.I., Soom, R.M., Ahmad, I., Lian, H.H.: Carboxymethyl cellulose from palm oil empty fruit bunch–their properties and use as a film coating agent. J Sains Kesihatan Malaysia 4, 53–62 (2007)

    Google Scholar 

  21. Vieira, M.C., Heinzel, Th., Antonio-Cruz, R., Mendoza-Martinez, A.M.: Cellulose derivatives from cellulosic material isolated from Agaveb lechuguilla and fourcroydesCellulose. Cellulose 9, 203–212 (2002)

    Article  Google Scholar 

  22. Ruzene, D.S., Gonçalves, A.R., Teixeira, J.A., de Amorim, M.T.: Carboxymethylcellulose obtained by ethanol/water organosolv process under acid conditions. Appl. Biochem. Biotechnol. 137–140, 573–582 (2007)

    Article  Google Scholar 

  23. Heydarzadeh, H.D., Najafpour, G.D., Nazari-Moghaddam, A.A.: Catalyst-free conversion of alkali cellulose to fine carboxymethyl cellulose at mild conditions. World Appl Sci J 6, 564–569 (2009)

    Google Scholar 

  24. Jahan, I.A., Sultana, F., Islam, M.N., Hossain, M.A., Abedin, J.: Studies on indigenous cotton linters for preparation of carboxymethyl cellulose. Bangladesh J. Sci. Ind. Res. 42, 29–36 (2007)

    Article  Google Scholar 

  25. Varshney, V.K., Gupta, P.K., Naithani, S., Khullar, R., Bhatt, A., Soni, P.L.: Carboxymethylation of α-cellulose isolated from Lantana camara with respect to degree of substitution and rheological behavior. Carbohydr. Polym. 63, 40–45 (2006)

    Article  Google Scholar 

  26. Yasar, F., Togrul, H., Arslan, N.: Flow properties of cellulose and carboxymethyl cellulose from orange peel. J. Food Eng. 81, 187–199 (2007)

    Article  Google Scholar 

  27. Jahan, I.A., Rahman, A.H.M.M.: Studies on preparation of cobalt carboxymethyl cellulose from agricultural wastes. Bangladesh J. Sci. Ind. Res. 41, 159–166 (2006)

    Google Scholar 

  28. Pushpamalar, V., Langford, S.J., Ahmad, M., Lim, Y.Y.: Optimization of reaction conditions for preparing carboxymethyl cellulose from sago waste. Carbohydr. Polym. 64, 312–318 (2006)

    Article  Google Scholar 

  29. Barai, B.K., Singhal, R.S., Kulkarni, P.R.: Optimization of a process for preparing carboxymethyl cellulose from water hyacinth (Eichornia crassipes). Carbohydr. Polym. 32, 229–231 (1997)

    Article  Google Scholar 

  30. Sakaguchi, Y., Tsutsumi, M., Kaji, A., Abe, S.: Structural changes in cellulose fibers treated with sodium hydroxide or liquid ammonia evaluated by relaxation behavior of solid-state 13C NMR spectroscopy. Sen’i Gakkaishi (In Japanese) 58, 321–326 (2002)

    Google Scholar 

  31. Kumar, S., Upadhyaya, J.S., Negi, Y.S.: Preparation of nanoparticles from corn cobs by chemical treatment methods. BioResources 5, 1292–1300 (2010)

    Google Scholar 

  32. Colom, X., Carrillo, F., Nogues, F., Garriga, P.: Structural analysis of photodegraded wood by means of FTIR spectroscopy. Polym. Degrad. Stab. 80, 543–549 (2003)

    Article  Google Scholar 

  33. Adebajo, M.O., Frost, R.L.: Infrared and 13C MAS nuclear magnetic resonance spectroscopic study of acetylation of cotton. Spectrochimica Acta Part A 60, 449–453 (2004)

    Article  Google Scholar 

  34. Kondo, T.: The assignment of IR absorption bands due to free hydroxyl groups in cellulose. Cellulose 4, 281–292 (1997)

    Article  Google Scholar 

  35. Ivanova, N.V., Korolenko, E.A., Korolik, E.V., Zhbankov, R.G.: IR spectrum of cellulose. J. Appl. Spectrosc. 51, 847–851 (1989)

    Article  Google Scholar 

  36. Fengel, D., Wegener, G.: Wood: Chemistry, Ultrastructure, Reactions. Walter de Gruyter & Co, Berlin (1989)

    Google Scholar 

  37. Singh, R.K., Khatri, O.P.: A scanning electron microscope based new method for determining degree of substitution of sodium carboxymethyl cellulose. J. Microsc. 246, 43–52 (2012)

    Article  Google Scholar 

  38. Khalil, M.I., Hasem, A., Habeish, A.: Carboxymethylation of maize starch. Starch/Starke 42, 60–63 (1990)

    Article  Google Scholar 

  39. Bhattacharyya, D., Singhal, R.S., Kulkarni, P.R.: A comparative account of conditions for synthesis of sodium carboxymethyl starch from corn and amaranth starch. Carbohydr. Polym. 27, 247–253 (1995)

    Article  Google Scholar 

  40. Hebeish, A., Abou-Zied, N.Y., Waly, A., Higazy, A.: Chemical modification of flax cellulose via etherification, esterification, and crosslinking reactions. Cellulose Chem Technol 22, 591–605 (1984)

    Google Scholar 

  41. Tijsen, C.J., Kolk, H.J., Stamhuis, E.J., Beenackers, A.A.: An experimental study on the carboxymethylation of granular potato starch in non-aqueous media. Carbohydr. Polym. 45, 219–226 (2001)

    Article  Google Scholar 

  42. Youssef, M.A.M., Nada, A.M.A., Ibrahem, A.A.: Effect of thermal treatment on the reactivity of cellulose towards carboxymethylation. Cellulose Chem Technol 23, 505–511 (1989)

    Google Scholar 

  43. Lin, X., Qu, T., Qi, S.: Kinetics of the carboxymethylation of cellulose in the isopropyl alcohol system. Acta Polym. 41, 220–222 (1990)

    Article  Google Scholar 

Download references

Acknowledgments

We kindly acknowledge the Director, IIP for his kind permission to publish these results. We thank the analytical division of Institute for providing analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raj Kumar Singh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Singh, R.K., Singh, A.K. Optimization of Reaction Conditions for Preparing Carboxymethyl Cellulose from Corn Cobic Agricultural Waste. Waste Biomass Valor 4, 129–137 (2013). https://doi.org/10.1007/s12649-012-9123-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-012-9123-9

Keywords

Navigation