Skip to main content
Log in

Biotechnological Potential of Brewers Spent Grain and its Recent Applications

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Purpose

Brewers spent grain (BSG) is a by-product of the brewing process corresponding to around 85% of total by-products generated. The great number of publications over the last 5 years, on the biotechnological applications of BSG, represents the increased scientific interest on it. This critical, state of the art review aims at gathering and analysing the most recent scientific efforts on the biotechnological potential of Brewer’s spent grain and on its evaluation as a feedstock for high added value products.

Methods

The assiduous bibliographic retrospection focused on the latest scientific reports. The consideration of all relevant scientific articles was thorough and critical. The classification of the scientific efforts was made not only according to the end-products but also according to the biotechnological approach adopted.

Results

BSG has been used in a wide range of biotechnological applications such as substrate for enzymes production, as a source for value-added products (antioxidants, monosaccharides, oligosaccharides, xylitol, arabitol, bioethanol, biogas or lactic acid) or for the production of functional proteins and lipids. Its applications as a carrier in various bioprocesses have also been reported.

Conclusion

The implementation of BSG’s fractionation in industrial scale seems to be the next step in BSG’s exploitation. A fractionation process which allows the exploitation of biomolecules belonging to different classes, produced from one feedstock (BSG) may be used as a pattern for the implementation of the biorefinery concept in industrial scale, as long as the methods adopted ensure the functionality of the potentially valuable components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

BG:

β-Glucosidases

BSG:

Brewers spent grain

CBH:

Cellobiohydrolases

CHP:

Critical humidity point

CMC:

Carboxy-methyl-cellulose

EG:

Endoglucanases

EPA:

Eicosapentaenoic acid

FA:

Ferulic acid

FAE:

Feruloyl esterase

FAO:

Food and Agriculture Organization

IU:

International units (μmol of roduct per min)

MRS broth:

de Man, Rogosa and Sharpe broth

NSP:

Non starch polysaccharides

pCA:

p-Coumaric acid

PUFA:

Polyunsaturated fatty acids

SEM:

Scanning electron microscopy

WAI:

Water absorption index

WB:

Wheat bran

XOS:

Xylo-oligosaccharides

References

  1. Mussatto, S.I., Dragone, G., Roberto, I.C.: Brewer’s spent grain: generation, characteristics and potential applications. J. Cereal Sci. 43, 1–14 (2006)

    Article  Google Scholar 

  2. Mussatto, S.I.: Biotechnological potential of brewing industry by-products. In: Singh nee’ Nigam, P., Pandey, A. (eds.) Biotechnology for Agro-Industrial Residues Utilisation, pp. 314–326. Springer Science+Business Media BV, Netherlands (2009)

    Google Scholar 

  3. Santos, M., Jiménez, J.J., Bartolomé, B., Gómez-Cordovés, C., Del Nozal, M.J.: Variability of brewers’ spent grain within a brewery. Food Chem. 80, 17–21 (2003)

    Article  Google Scholar 

  4. Mussatto, S.I., Roberto, I.C.: Chemical characterization and liberation of pentose sugars from brewer’s spent grain. J. Chem. Technol. Biotechnol. 81, 268–274 (2006)

    Article  Google Scholar 

  5. Celus, I., Brijs, K., Delcour, J.A.: The effects of malting and mashing on barley protein extractability. J. Cereal Sci. 44, 203–211 (2006)

    Article  Google Scholar 

  6. Jay, A.J., Parker, M.L., Faulks, R., Husband, F., Wilde, P., Smith, A.C., Faulds, C.B., Waldron, K.W.: A systematic micro-dissection of brewers’ spent grain. J. Cereal Sci. 47, 357–364 (2008)

    Article  Google Scholar 

  7. Robertson, J.A., I’Anson, K.J.A., Treimo, J., Faulds, C.B., Brocklehurst, T.F., Eijsink, V.G.H., Waldron, K.W.: Profiling brewers’ spent grain for composition and microbial ecology at the site of production. LWT-Food Sci. Technol. 43, 890–896 (2010)

    Article  Google Scholar 

  8. Kanauchi, O., Mitsuyama, K., Araki, Y.: Development of a functional germinated barley foodstuff from brewers’ spent grain for the treatment of ulcerative colitis. J. Am. Soc. Brew. Chem. 59, 59–62 (2001)

    Google Scholar 

  9. Mussatto, S.I., Roberto, I.C.: Acid hydrolysis and fermentation of brewer’s spent grain to produce xylitol. J. Sci. Food Agric. 85, 2453–2460 (2005)

    Article  Google Scholar 

  10. Xiros, C., Topakas, E., Katapodis, P., Christakopoulos, P.: Hydrolysis and fermentation of brewer’s spent grain by Neurospora crassa. Bioresour. Technol. 99, 5427–5435 (2008)

    Article  Google Scholar 

  11. Carvalheiro, F., Esteves, M.P., Parajó, J.C., Pereira, H., Gírio, F.M.: Production of oligosaccharides by autohydrolysis of brewery’s spent grain. Bioresour. Technol. 91, 93–100 (2004)

    Article  Google Scholar 

  12. Forssell, P., Kontkanen, H., Schols, H.A., Hinz, S., Eijsink, V.G.H., Treimo, J., Robertson, J.A., Waldron, K.W., Faulds, C.B., Buchert, J.: Hydrolysis of brewers’ spent grain by carbohydrate degrading enzymes. J. Inst. Brew. 114, 306–314 (2008)

    Google Scholar 

  13. Huige, N.J.: Brewery by-products and effluents. In: Hardwick, W.A. (ed.) Handbook of Brewing, pp. 501–550. Marcel Dekker, New York (1994)

    Google Scholar 

  14. Russ, W., Mörtel, H., Meyer-Pittroff, R.: Application of spent grains to increase porosity in bricks. Constr. Build. Mater. 19, 117–126 (2005)

    Article  Google Scholar 

  15. Ishiwaki, N., Murayama, H., Awayama, H., Kanauchi, O., Sato, T.: Development of high value uses of spent grain by fractionation technology. Tech. Q. Master Brew. Assoc. Am. 37, 261–265 (2000)

    Google Scholar 

  16. Okamoto, H., Kitagawa, Y., Minowa, T., Ogi, T.: Thermal-catalytic conversion of high moisture spent grains to a gaseous fuel. Tech. Q. Master Brew. Assoc. Am. 36, 239–241 (1999)

    Google Scholar 

  17. Zanker, G., Kepplinger, W., Pecher, C.: Incineration of solid food waste: a project about spent grain. In: Oreopoulou, V., Russ, W. (eds.) Utilization of By-Products and Treatment of Waste in the Food Industry, pp. 273–281. Springer, USA (2007)

    Chapter  Google Scholar 

  18. Chiang, P.C., Chang, P., You, J.H.: Innovative technology for controlling VOC emissions. J. Hazard. Mater. 31, 19–28 (1992)

    Article  Google Scholar 

  19. Aliyu, S., Bala, M.: Brewer’s spent grain: a review of its potentials and applications. Afr. J. Biotechnol. 10, 324–331 (2011)

    Google Scholar 

  20. Benko, Z., Drahos, E., Szengyel, Z., Puranen, T., Vehmaanperä, J., Réczey, K.: Thermoascus aurantiacus CBHI/Cel7A production in Trichoderma reesei on alternative carbon sources. Appl. Biochem. Biotechnol. 137–140, 195–204 (2007)

    Article  Google Scholar 

  21. Francis, F., Sabu, A., Nampoothiri, K.M., Ramachandran, S., Ghosh, S., Szakacs, G., Pandey, A.: Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochem. Eng. J. 15, 107–115 (2003)

    Article  Google Scholar 

  22. Xu, H., Sun, L., Zhao, D., Zhang, B., Shi, Y., Wu, Y.: Production of α-amylase by Aspergillus oryzae As 3951 in solid state fermentation using spent brewing grains as substrate. J. Sci. Food Agric. 88, 529–535 (2008)

    Article  Google Scholar 

  23. Patel, A.K., Nampoothiri, K.M., Ramachandran, S., Szakacs, G., Pandey, A.: Partial purification and characterization of α-amylase produced by Aspergillus oryzae using spent-brewing grains. Ind. J. Biotechnol. 4, 336–341 (2005)

    Google Scholar 

  24. Hashemi, M., Razavi, S.H., Shojaosadati, S.A., Mousavi, S.M.: The potential of brewer’s spent grain to improve the production of α-amylase by Bacillus sp. KR-8104 in submerged fermentation system. New Biotechnol. 28, 165–172 (2011)

    Article  Google Scholar 

  25. Adeniran, H.A., Abiose, S.H., Ogunsua, A.O.: Production of fungal β-amylase and amyloglucosidase on some nigerian agricultural residues. Food Bioprocess Technol. 3, 693–698 (2010)

    Article  Google Scholar 

  26. Mandalari, G., Bisignano, G., Lo Curto, R.B., Waldron, K.W., Faulds, C.B.: Production of feruloyl esterases and xylanases by Talaromyces stipitatus and Humicola grisea var. thermoidea on industrial food processing by-products. Bioresour. Technol. 99, 5130–5133 (2005)

    Article  Google Scholar 

  27. Terrasan, C.R.F., Temer, B., Duarte, M.C.T., Carmona, E.C.: Production of xylanolytic enzymes by Penicillium janczewskii. Bioresour. Technol. 101, 4139–4143 (2010)

    Article  Google Scholar 

  28. Grigorevski-Lima, A.L., Da Vinha, F.N.M., Souza, D.T., Bispo, A.S.R., Bon, E.P.S., Coelho, R.R.R., Nascimento, R.P.: Aspergillus fumigatus thermophilic and acidophilic endoglucanases. Appl. Biochem. Biotechnol. 155, 321–329 (2009)

    Article  Google Scholar 

  29. Xiros, C., Topakas, E., Katapodis, P., Christakopoulos, P.: Evaluation of Fusarium oxysporum as an enzyme factory for the hydrolysis of brewer’s spent grain with improved biodegradability for ethanol production. Ind. Crop Prod. 28, 213–224 (2008)

    Article  Google Scholar 

  30. Xiros, C., Christakopoulos, P.: Enhanced ethanol production from brewer’s spent grain by a Fusarium oxysporum consolidated system. Biotechnol. Biofuels. 2, 4 (2009)

    Article  Google Scholar 

  31. Panagiotou, G., Granouillet, P., Olsson, L.: Production and partial characterization of arabinoxylan-degrading enzymes by Penicillium brasilianum under solid-state fermentation. Appl. Microbiol. Biotechnol. 72, 1117–1124 (2006)

    Article  Google Scholar 

  32. Nascimento, R.P., Junior, N.A., Pereira Jr, N., Bon, E.P.S., Coelho, R.R.R.: Brewer’s spent grain and corn steep liquor as substrates for cellulolytic enzymes production by Streptomyces malaysiensis. Lett. Appl. Microbiol. 48, 529–535 (2009)

    Article  Google Scholar 

  33. Szponar, B., Pawlik, K.J., Gamian, A., Szwajcer Dey, E.: Protein fraction of barley spent grain as a new simple medium for growth and sporulation of soil Actinobacteria. Biotechnol. Lett. 25, 1717–1721 (2003)

    Article  Google Scholar 

  34. Szwajgier, D., Jakubczyk, A.: Production of extracellular ferulic acid esterases by Lactobacillus strains using natural and synthetic carbon sources. Acta Sci. Pol. Technol. Aliment. 10(3), 287–302 (2011)

    Google Scholar 

  35. Szwajgier, D., Dmowska, K.: Novel ferulic acid esterases from Bifidobacterium sp. produced on selected synthetic and natural carbon sources. Acta Sci. Pol. Technol. Aliment. 9, 305–318 (2010)

    Google Scholar 

  36. Novik, G.I., Wawrzynczyk, J., Norrlow, O., Szwajcer-Dey, E.: Fractions of barley spent grain as media for growth of probiotic bacteria. Microbiology 76, 804–808 (2007)

    Article  Google Scholar 

  37. Sandhya, C., Sumantha, A., Szakacs, G., Pandey, A.: Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochem. 40, 2689–2694 (2005)

    Article  Google Scholar 

  38. Lara, M., Arias, A., Villasenor, L.: Cultivation of Pleurotus ostreatus and P. Pulmonarius on spent brewer’s grain and tequila maguey bagasse. In: Sánchez, J.E., Huerta, G., Montiel, E. (eds.) Mushroom Biology and Mushroom Products, pp. 323–330. Autónoma del Estado de Morelos, Mexico (2002)

    Google Scholar 

  39. Gregori, A., Švagelj, M., Pahor, B., Berovič, M., Pohleven, F.: The use of spent brewery grains for Pleurotus ostreatus cultivation and enzyme production. New Biotechnol. 25, 157–161 (2008)

    Article  Google Scholar 

  40. Harris, P.V., Welner, D., McFarland, K.C., Re, E., Navarro Poulsen, J.C., Brown, K., Salbo, R., Ding, H., Vlasenko, E., Merino, S., Xu, F., Cherry, J., Larsen, S., Lo Leggio, L.: Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49, 3305–3316 (2010)

    Article  Google Scholar 

  41. de Vries, R.P., Kester, H.C.M., Poulsen, C.H., Benen, J.A.E., Visser, J.: Synergy between enzymes from Aspergillus involved in the degradation of plant cell wall polysaccharides. Carbohydr. Res. 327, 401–410 (2000)

    Article  Google Scholar 

  42. Xiros, C., Katapodis, P., Christakopoulos, P.: Factors affecting cellulose and hemicellulose hydrolysis of alkali treated brewers spent grain by F. oxysporum enzyme extract. Bioresour. Technol. 102, 1688–1696 (2011)

    Article  Google Scholar 

  43. Van Craeyveld, V., Swennen, K., Dornez, E., Van de Wiele, T., Marzorati, M., Verstraete, W., Delaedt, Y., Onagbesan, O., Decuypere, E., Buyse, J., De Ketelaere, B., Broekaert, W.F., Delcour, J.A., Courtin, C.M.: Structurally different wheat-derived arabinoxylooligosaccharides have different prebiotic and fermentation properties in rats. J. Nutr. 138, 2348–2355 (2008)

    Article  Google Scholar 

  44. Gibson, G.R., Probert, H.M., Van Loo, J., Rastall, R.A., Roberfroid, M.B.: Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr. Res. Rev. 17, 259–275 (2004)

    Article  Google Scholar 

  45. Vegas, R., Alonso, J.L., Domínguez, H., Parajó, J.C.: Manufacture and refining of oligosaccharides from industrial solid wastes. Ind. Eng. Chem. Res. 44, 614–620 (2005)

    Article  Google Scholar 

  46. Kabel, M.A., Carvalheiro, F., Garrote, G., Avgerinos, E., Koukios, E., Parajó, J.C., Gírio, F.M., Schols, H.A., Voragen, A.G.J.: Hydrothermally treated xylan rich byproducts yield different classes of xylo-oligosaccharides. Carbohydr. Res. 50, 47–56 (2002)

    Google Scholar 

  47. Szakács, G., Urbánszki, K., Tengerdy, R.P.: Solid-state enzymes for fiber hydrolysis. ACS Symp. Ser. 769, 190–203 (2001)

    Article  Google Scholar 

  48. Napolitano, A., Lanzuise, S., Ruocco, M., Arlotti, G., Ranieri, R., Knutsen, S.H., Lorito, M., Fogliano, V.: Treatment of cereal products with a tailored preparation of Trichoderma enzymes increases the amount of soluble dietary fiber. J. Agric. Food Chem. 54, 7863–7869 (2006)

    Article  Google Scholar 

  49. Duarte, L.C., Carvalheiro, F., Lopes, S., Marques, S., Parajó, J.C., Gírio, F.M.: Comparison of two posthydrolysis processes of brewery’s spent grain autohydrolysis liquor to produce a pentose-containing culture medium. Appl. Biochem. Biotechnol. 113–116, 1041–1058 (2004)

    Article  Google Scholar 

  50. Mussatto, S.I., Fernandes, M., Milagres, A.M.F., Roberto, I.C.: Effect of hemicellulose and lignin on enzymatic hydrolysis of cellulose from brewer’s spent grain. Enzyme Microb. Technol. 43, 124–129 (2008)

    Article  Google Scholar 

  51. Mussatto, S.I., Dragone, G., Fernandes, M., Milagres, A.M.F., Roberto, I.C.: The effect of agitation speed, enzyme loading and substrate concentration on enzymatic hydrolysis of cellulose from brewer’s spent grain. Cellulose 15, 711–721 (2008)

    Article  Google Scholar 

  52. Pierre, G., Sannier, F., Goude, R., Nouviaire, A., Maache-Rezzoug, Z., Rezzoug, S.-A., Maugard, T.: Evaluation of thermomechanical pretreatment for enzymatic hydrolysis of pure microcrystalline cellulose and cellulose from brewers’ spent grain. J. Cereal Sci. (2011). doi:10.1016/j.jcs.2011.06.004

    Google Scholar 

  53. Faulds, C.B., Robertson, J.A., Waldron, K.W.: Effect of pH on the solubilization of brewers’ spent grain by microbial carbohydrases and proteases. J. Agric. Food Chem. 56, 7038–7043 (2008)

    Article  Google Scholar 

  54. Faulds, C.B., Collins, S., Robertson, J.A., Treimo, J., Eijsink, V.G.H., Hinz, S.W.A., Schols, H.A., Buchert, J., Waldron, K.W.: Protease-induced solubilisation of carbohydrates from brewers’ spent grain. J. Cereal. Sci. 50, 332–336 (2009)

    Article  Google Scholar 

  55. Forssell, P., Treimo, J., Eijsink, V.G.H., Faulds, C.B., Collins, S., Schols, H.A., Hinz, S.W.A., Myllymäki, O., Tamminen, T., Zoldners, J., Viljanen, K., Waldron, K.W., Buchert, J.: Enzyme-aided fractionation of brewer’s spent grains in pilot scale. J. Am. Soc. Brew. Chem. 69(2), 91–99 (2011)

    Google Scholar 

  56. Robertson, J.A., Castro-Mariñas, L., Collins, S.R.A., Faulds, C.B., Waldron, K.W.: Enzymatic and chemical treatment limits on the controlled solubilization of brewers’ spent grain. J. Agric. Food Chem. 59, 11019–11025 (2011)

    Article  Google Scholar 

  57. Fu, Q., Yu, X., Li, L., Liu, G., Li, B. 2011. Antioxidant activities of soluble dietary fiber extracted from brewers’ spent grain. Adv. Mat. Res. 233–235, 2824–2827 (2011)

  58. Mandalari, G., Faulds, C.B., Sancho, A.I., Saija, A., Bisignano, G., LoCurto, R., Waldron, K.W.: Fractionation and characterization of arabinoxylans from brewers’ spent grain and wheat bran. J. Cereal Sci. 42, 205–212 (2008)

    Article  Google Scholar 

  59. Hernanz, D., Nuñez, V., Sancho, A.I., Faulds, C.B., Williamson, G., Bartolomé, B., Gómez-Cordovés, C.: Hydroxycinnamic acids and ferulic acid dehydrodimers in barley and processed barley. J. Agric. Food Chem. 49, 4884–4888 (2001)

    Article  Google Scholar 

  60. Xiros, C., Moukouli, M., Topakas, E., Christakopoulos, P.: Factors affecting ferulic acid release from brewer’s spent grain by Fusarium oxysporum enzymatic system. Bioresour. Technol. 100, 5917–5921 (2009)

    Article  Google Scholar 

  61. Huang, S.M., Hsu, C.L., Chuang, H.C., Shih, P.H., Wu, C.H., Yen, G.C.: Inhibitory effect of vanillic acid on methylglyoxal-mediated glycation in apoptotic Neuro-2A cells. Neurotoxicology 29, 1016–1022 (2008)

    Article  Google Scholar 

  62. Crepin, V.F., Faulds, C.B., Connerton, I.F.: Functional classification of the microbial feruloyl esterases. Appl. Microbiol. Biotechnol. 63, 647–652 (2004)

    Article  Google Scholar 

  63. Topakas, E., Vafiadi, C., Christakopoulos, P.: Microbial production, characterization and applications of feruloyl esterases. Process Biochem. 42, 497–509 (2007)

    Article  Google Scholar 

  64. Faulds, C.B., Sancho, A.I., Bartolomé, B.: Mono- and dimeric ferulic acid release from brewer’s spent grain by fungal feruloyl esterases. Appl. Microbiol. Biotechnol. 60, 489–493 (2003)

    Google Scholar 

  65. Bartolomé, B., Gómez-Cordovés, C., Sancho, A.I., Díez, N., Ferreira, P., Soliveri, J., Copa-Patiño, J.L.: Growth and release of hydroxycinnamic acids from brewer’s spent grain by Streptomyces avermitilis CECT 3339. Enzyme Microb. Technol. 32, 140–144 (2003)

    Article  Google Scholar 

  66. Szwajgier, D., Waśko, A., Targoński, Z., Niedźwiadek, M., Bancarzewska, M.: The use of a novel ferulic acid esterase from Lactobacillus acidophilus K1 for the release of phenolic acids from brewer’s spent grain. J. Inst. Brew. 116, 293–303 (2010)

    Google Scholar 

  67. Faulds, C.B., Zanichelli, D., Crepin, V.F., Connerton, I.F., Juge, N., Bhat, M.K., Waldron, K.W.: Specificity of feruloyl esterases for water-extractable and water-unextractable feruloylated polysaccharides: Influence of xylanase. J. Cereal Sci. 38, 281–288 (2003)

    Article  Google Scholar 

  68. Faulds, C.B., Mandalari, G., Lo Curto, R.B., Bisignano, G., Christakopoulos, P., Waldron, K.W.: Synergy between xylanases from glycoside hydrolase family 10 and family 11 and a feruloyl esterase in the release of phenolic acids from cereal arabinoxylan. Appl. Microbiol. Biotechnol. 71, 622–629 (2006)

    Article  Google Scholar 

  69. Faulds, C.B., Mandalari, G., Lo Curto, R.B., Bisignano, G., Waldron, K.W.: Influence of the arabinoxylan composition on the susceptibility of mono- and dimeric ferulic acid release by Humicola insolens feruloyl esterases. J Sci. Food Agric. 86, 1623–1630 (2006)

    Article  Google Scholar 

  70. Winkelhausen, E., Kuzmanova, S.: Microbial conversion of d-xylose to xylitol. J Ferment. Bioeng. 86, 1–14 (1998)

    Article  Google Scholar 

  71. Mussatto, S.I., Dragone, G., Roberto, I.C.: Kinetic behavior of Candida guilliermondii yeast during xylitol production from brewer’s spent grain hemicellulosic hydrolysate. Biotechnol. Progr. 21, 1352–1356 (2005)

    Article  Google Scholar 

  72. Mussatto, S.I., Dragone, G., Roberto, I.C.: Influence of the toxic compounds present in brewer’s spent grain hemicellulosic hydrolysate on xylose-to-xylitol bioconversion by Candida guilliermondii. Process Biochem. 40, 3801–3806 (2005)

    Article  Google Scholar 

  73. Pereira, R.S., Mussatto, S.I., Roberto, I.C.: Inhibitory action of toxic compounds present in lignocellulosic hydrolysates on xylose to xylitol bioconversion by Candida guilliermondii. J. Ind. Microbiol. Biotechnol. 38, 71–78 (2011)

    Article  Google Scholar 

  74. Mussatto, S.I., Silva, C.J.S.M., Roberto, I.C.: Fermentation performance of Candida guilliermondii for xylitol production on single and mixed substrate media. Appl. Microbiol. Biotechnol. 72, 681–686 (2006)

    Article  Google Scholar 

  75. Nolleau, V., Preziosi-Belloy, L., Delgenes, J.P., Navarro, J.M.: Xylitol production from xylose by two yeast strains: sugar tolerance. Curr. Microbiol. 27, 191–197 (1993)

    Article  Google Scholar 

  76. Mussatto, S.I., Roberto, I.C.: Establishment of the optimum initial xylose concentration and nutritional supplementation of brewer’s spent grain hydrolysate for xylitol production by Candida guilliermondii. Process Biochem. 43, 540–546 (2008)

    Article  Google Scholar 

  77. Shindo, S., Tachibana, T.: Production of l-lactic acid from spent grain, a by-product of beer production. J. Inst. Brew. 110, 347–351 (2004)

    Google Scholar 

  78. Mussatto, S.I., Fernandes, M., Dragone, G., Mancilha, I.M., Roberto, I.C.: Brewer’s spent grain as raw material for lactic acid production by Lactobacillus delbrueckii. Biotechnol. Lett. 29, 1973–1976 (2007)

    Article  Google Scholar 

  79. Mussatto, S.I., Fernandes, M., Mancilha, I.M., Roberto, I.C.: Effects of medium supplementation and pH control on lactic acid production from brewer’s spent grain. Biochem. Eng. J. 40, 437–444 (2008)

    Article  Google Scholar 

  80. Gullón, P., González-Muñoz, M.J., Parajó, J.C.: Manufacture and prebiotic potential of oligosaccharides derived from industrial solid wastes. Bioresour. Technol. 102(10), 6112–6119 (2011)

    Article  Google Scholar 

  81. White, J.S., Yohannan, B.K., Walker, G.M.: Bioconversion of brewer’s spent grains to bioethanol. FEMS Yeast Res. 8, 1175–1184 (2008)

    Article  Google Scholar 

  82. Richard, P., Verho, R., Putkonen, M., Londesborough, J., Penttilä, M.: Production of ethanol from l-arabinose by Saccharomyces cerevisiae containing a fungal l-arabinose pathway. FEMS Yeast Res. 3, 185–189 (2003)

    Article  Google Scholar 

  83. Knocke, C., Vogt, J.: Biofuels—challenges & chances: how biofuel development can benefit from advanced process technology. Eng. Life Sci. 9, 96–99 (2009)

    Article  Google Scholar 

  84. Ward, A.J., Hobbs, P.J., Holliman, P.J., Jones, D.L.: Optimisation of the anaerobic digestion of agricultural resources. Bioresour. Technol. 99, 7928–7940 (2008)

    Article  Google Scholar 

  85. Ezeonu, F.C., Okaka, A.N.C.: Process kinetics and digestion efficiency of anaerobic batch fermentation of brewer’s spent grains (BSG). Process Biochem. 31, 7–12 (1996)

    Article  Google Scholar 

  86. Bochmann, G., Herfellner, T., Susanto, F., Kreuter, F., Pesta, G.: Application of enzymes in anaerobic digestion. Water Sci. Technol. 56, 29–35 (2007)

    Google Scholar 

  87. Ochs, D., Kastner, V.: Combined methane and hydrogen production for the application in a stationary motor. Chem. Eng. Trans. 21, 1261–1266 (2010)

    Google Scholar 

  88. Sežun, M., Grilc, V., Zupančič, G.D., Logar, R.M.: Anaerobic digestion of brewery spent grain in a semi-continuous bioreactor: Inhibition by phenolic degradation products. Acta Chim. Slov. 58(1), 158–166 (2011)

    Google Scholar 

  89. Clemente, A.: Enzymatic protein hydrolysates in human nutrition. Trends Food Sci. Technol. 11, 254–262 (2000)

    Article  Google Scholar 

  90. Celus, I., Brijs, K., Delcour, J.A.: Enzymatic hydrolysis of brewers’ spent grain proteins and technofunctional properties of the resulting hydrolysates. J. Agric. Food Chem. 55, 8703–8710 (2007)

    Article  Google Scholar 

  91. Celus, I., Brijs, K., Delcour, J.A.: Fractionation and characterization of brewers’ spent grain protein hydrolysates. J. Agric. Food Chem. 5, 5563–5570 (2009)

    Article  Google Scholar 

  92. Treimo, J., Aspmo, S.I., Eijsink, V.G.H., Horn, S.J.: Enzymatic solubilization of proteins in brewer’s spent grain. J. Agric. Food Chem. 56, 5359–5365 (2008)

    Article  Google Scholar 

  93. Treimo, J., Westereng, B., Horn, S.J., Forssell, P., Robertson, J.A., Faulds, C.B., Waldron, K.W., Buchert, J., Eijsink, V.G.H.: Enzymatic solubilization of brewers’ spent grain by combined action of carbohydrases and peptidases. J. Agric. Food Chem. 57, 3316–3324 (2009)

    Article  Google Scholar 

  94. Price, P.B., Parsons, J.G.: Lipids of six cultivated barley (Hordeum vulgare L.) varieties. Lipids 9, 560–566 (1974)

    Article  Google Scholar 

  95. Bohnsack, C., Ternes, W., Büsing, A., Drotleff, A.M.: Tocotrienol levels in sieving fraction extracts of brewer’s spent grain. Eur. Food Res. Technol. 232(4), 563–573 (2011)

    Article  Google Scholar 

  96. Stredansky, M., Conti, E., Salaris, A.: Production of polyunsaturated fatty acids by Pythium ultimum in solid- state cultivation. Enzyme Microb. Technol. 26, 304–307 (2000)

    Article  Google Scholar 

  97. Conti, E., Stredansky, M., Stredanska, S., Zanetti, F.: γ-Linolenic acid production by solid-state fermentation of Mucorales strains on cereals. Bioresour. Technol. 76, 283–286 (2001)

    Article  Google Scholar 

  98. Jacobs, A., Botha, A., van Zyl, W.H.: The production of eicosapentaenoic acid by representatives of the genus Mortierella grown on brewers’ spent grain. Biologia 64, 871–876 (2009)

    Article  Google Scholar 

  99. Mussatto, S.I., Aguilar, C.N., Rodrigues, L.R., Teixeira, J.A.: Fructooligosaccharides and β-fructofuranosidase production by Aspergillus japonicus immobilized on lignocellulosic materials. J. Mol. Catal. B: Enzym. 59, 76–81 (2009)

    Article  Google Scholar 

  100. Brányik, T., Vicente, A.A., Machado Cruz, J.M., Teixeira, J.A.: Spent grains—a new support for brewing yeast immobilization. Biotechnol. Lett. 23, 1073–1078 (2001)

    Article  Google Scholar 

  101. Brányik, T., Silva, D.P., Vicente, A.A., Lehnert, R., e Silva, J.B., e Silva, J.B., Teixeira, J.A.: Continuous immobilized yeast reactor system for complete beer fermentation using spent grains and corncobs as carrier materials. J. Ind. Microbiol. Biotechnol. 33, 1010–1018 (2006)

    Article  Google Scholar 

  102. Kopsahelis, N., Agouridis, N., Bekatorou, A., Kanellaki, M.: Comparative study of spent grains and delignified spent grains as yeast supports for alcohol production from molasses. Bioresour. Technol. 98, 1440–1447 (2007)

    Article  Google Scholar 

  103. Tsaousi, K., Koutinas, A.A., Bekatorou, A., Loukatos, P.: Fermentation efficiency of cells immobilized on delignified brewers’ spent grains after low- and high-temperature thin layer thermal drying. Appl. Biochem. Biotechnol. 162(2), 594–606 (2010)

    Article  Google Scholar 

  104. Tsaousi, K., Velli, A., Akarepis, F., Bosnea, L., Drouza, C., Koutinas, A.A., Bekatorou, A.: Low-temperature winemaking by thermally dried immobilized yeast on delignified brewer’s spent grains. Food Technol. Biotechnol. 49(3), 379–384 (2011)

    Google Scholar 

  105. Mohammadi, A., Razavi, S.H., Mousavi, S.M., Rezaei, K.A.: Comparison between sugar consumption and ethanol production in wort by immobilized Saccharomyces cerevisiae, Saccharomyces ludwigii and Saccharomyces rouxii on brewer’s spent grain. Braz. J. Microbiol. 42(2), 605–615 (2011)

    Google Scholar 

  106. Almeida, C., Brányik, T., Moradas-Ferreirac, P., Teixeira, J.: Use of two different carriers in a packed bed reactor for endopolygalacturonase production by a yeast strain. Process Biochem. 40, 1937–1942 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to express their gratefulness to Dr Vera Lyberopoulou (School of Chemical Engineering, NTUA) for the SEM observations and photos.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Christakopoulos.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiros, C., Christakopoulos, P. Biotechnological Potential of Brewers Spent Grain and its Recent Applications. Waste Biomass Valor 3, 213–232 (2012). https://doi.org/10.1007/s12649-012-9108-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-012-9108-8

Keywords

Navigation