Skip to main content
Log in

Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

This study describes the use of alkaline silicate solutions produced by mixing silica fume (SF) or rice husk ash (RHA) with aqueous NaOH, as alternative silica-based activators for metakaolin (MK)/slag (GBFS) blended binders. Pastes prepared with these activators show similar trends in mechanical strength development as a function of activation conditions compared with the pastes obtained using commercial silicate solutions as activator. All activating solutions promote higher compressive strength development with increased contents of GBFS in the binders, which promotes the coexistence of aluminosilicate reaction products along with calcium silicate hydrate gel. Higher-silica binding systems prefer a higher GBFS content for optimal strength development compared to those with a lower overall SiO2/Al2O3 ratio. SF-derived activators give reaction products which are very similar to those obtained using commercial silicate solutions, as a consequence of the high reactivity of this precursor, supplying high concentrations of Si to the systems since the early stages of reaction. RHA-derived activators appear to have slightly delayed Si availability due to the less-reactive character of this precursor, which influences the relative rates of formation of the two types of gel in blended systems. These results show that activation of GBFS/MK blends with by-product derived silicate-based activators can generate mechanical strengths and structures comparable to those obtained using commercial silicate solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Provis, J.L., van Deventer, J.S.J. (eds.): Geopolymers: Structures, Processing, Properties and Industrial Applications. Woodhead Publishing, Abingdon (2009)

    Google Scholar 

  2. van Deventer, J.S.J., Provis, J.L., Duxson, P., Brice, D.G.: Chemical research and climate change as drivers in the commercial adoption of alkali-activated materials. Waste Biomass Valoriz. 1(1), 145–155 (2010)

    Article  Google Scholar 

  3. Provis, J.L.: Activating solution chemistry for geopolymers. In: Provis, J.L., van Deventer, J.S.J. (eds.) Geopolymers: Structures, Processing, Properties and Industrial Applications, pp. 50–71. Woodhead Publishing, Abingdon (2009)

    Google Scholar 

  4. Wang, S.-D., Scrivener, K.L., Pratt, P.L.: Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 24(6), 1033–1043 (1994)

    Article  Google Scholar 

  5. Palomo, A., Grutzeck, M.W., Blanco, M.T.: Alkali-activated fly ashes: a cement for the future. Cem. Concr. Res. 29(8), 1323–1329 (1999)

    Article  Google Scholar 

  6. Bakharev, T., Sanjayan, J.G., Cheng, Y.-B.: Alkali activation of Australian slag cement. Cem. Concr. Res. 29(1), 113–120 (1999)

    Article  Google Scholar 

  7. Fernández-Jiménez, A., Puertas, F.: Effect of activator mix on the hydration and strength behaviour of alkali-activated slag cements. Adv. Cem. Res. 15(3), 129–136 (2003)

    Article  Google Scholar 

  8. Fernández-Jiménez, A., Palomo, A.: Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cem. Concr. Res. 35(10), 1984–1992 (2005)

    Article  Google Scholar 

  9. Witherspoon, R., Wang, H., Aravinthan, T. and Omar T.: Energy and emissions analysis of fly ash based geopolymers. In: Proceedings of SSEE 2009 International Conference. CD-ROM Proceedings, Melbourne, Australia (2009)

  10. Tempest, B., Sanusi, O., Gergely, J., Ogunro, V., Weggel, D.: Compressive strength and embodied energy optimization of fly ash based geopolymer concrete. In: Proceedings of the 2009 World of Coal Ash (WOCA) Conference. Lexington, KY, USA (2009)

  11. Fawer, M., Concannon, M., Rieber, W.: Life cycle inventories for the production of sodium silicates. Int. J. Life Cycle Assess. 4(4), 207–212 (1999)

    Article  Google Scholar 

  12. Živica, V.: High effective silica fume alkali activator. Bull. Mater. Sci. 27(2), 179–182 (2004)

    Article  Google Scholar 

  13. Živica, V.: Effectiveness of new silica fume alkali activator. Cem. Concr. Compos. 28(1), 21–25 (2006)

    Article  Google Scholar 

  14. Bajza, A., Rouseková, I., Živica, V.: Silica fume-sodium hydroxide binding systems. Cem. Concr. Res. 28(1), 13–18 (1998)

    Article  Google Scholar 

  15. Rouseková, I., Bajza, A., Živica, V.: Silica fume-basic blast furnace slag systems activated by an alkali silica fume activator. Cem. Concr. Res. 27(12), 1825–1828 (1997)

    Article  Google Scholar 

  16. Rodríguez, E.D., Bernal, S.A., Provis, J.L., Paya, J., Monzó, J.M., Borrachero, M.V.: Effect of nanosilica-based activators on the performance of an alkali-activated fly ash binder. Cem. Concr. Compos. (submitted for publication) (2011)

  17. Sun, L., Gong, K.: Silicon-based materials from rice husk and their applications. Ind. Eng. Chem. Res. 40, 5861–5877 (2001)

    Article  Google Scholar 

  18. Krishnarao, R.V., Subrahmanyam, J., Kumar, T.J.: Studies on the formation of black particles in rice husk silica ash. J. Eur. Ceram. Soc. 21(1), 99–104 (2001)

    Article  Google Scholar 

  19. Della, V.P., Kühn, I., Hotza, D.: Rice husk ash as an alternate source for active silica production. Mater. Lett. 57, 818–821 (2002)

    Article  Google Scholar 

  20. Chandrasekhar, S., Satyanarayana, K.G., Pramada, P.N., Raghavan, P., Gupta, T.N.: Review: Processing, properties and applications of reactive silica from rice husk- an overview. J. Mater. Sci. 38, 3159–3168 (2003)

    Article  Google Scholar 

  21. Detphan, S., Chindaprasirt, P.: Preparation of fly ash and rice husk ash geopolymer. Int. J. Miner. Metall. Mater. 16(6), 720–726 (2009)

    Google Scholar 

  22. Wang, H.P., Lin, H.S., Huang, Y.J., Li, M.C., Tsaur, L.K.: Synthesis of zeolite ZSM-48 from rice husk ash. J. Hazard. Mater. 58(1–3), 147–152 (1998)

    Article  Google Scholar 

  23. Songpiriyakji, S., Kubprasit, T., Jaturapitakkul, C., Chindaprasirt, P.: Compressive strength and degree of reaction of biomass- and sly ash-based geopolymer. Constr. Build. Mater. 24(3), 236–240 (2010)

    Article  Google Scholar 

  24. Kordatos, K., Gavela, S., Ntziouni, A., Pistiolas, K.N., Kyritsi,A., Kasselouri-Rigopoulou, V.: Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash. Microporous Mesoporous Mater. 115(1–2), 189–196. (2008)

    Google Scholar 

  25. Prasetyoko, D., Ramli, Z., Endud, S., Hamdan, H., Sulikowski, B.: Conversion of rice husk ash to zeolite beta. Waste Manag. 26(10), 1173–1179 (2006)

    Article  Google Scholar 

  26. Folleto, E.L., Gratieri, E., Hadlich de Oliviera, L., Jahn, L.S.: Conversion of rice hull ash into soluble sodium silicate. Mater. Res. 9(3), 335–338 (2006)

    Article  Google Scholar 

  27. Bejarano, J.: Obtención de una solución de silicato de sodio y sílice precipitada a partir de cascarilla de arroz y ceniza de cascarilla de arroz de un combustor. Master thesis, Universidad del Valle. Cali, Colombia (2010)

  28. Alonso, S., Palomo, A.: Alkali activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater. Lett. 47(2), 55–62 (2001)

    Article  Google Scholar 

  29. Yip, C.K., Lukey, G.C., van Deventer, J.S.J.: The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35, 1688–1697 (2005)

    Article  Google Scholar 

  30. Yip, C.K., Lukey, G.C., Provis, J.L., van Deventer, J.S.J.: Effect of calcium silicate sources on geopolymerisation. Cem. Concr. Res. 38(4), 554–564 (2008)

    Article  Google Scholar 

  31. Buchwald, A., Tatarin, R., Stephan, D.: Reaction progress of alkaline-activated metakaolin-ground granulated blast furnace slag blends. J. Mater. Sci. 44, 5609–5617 (2009)

    Article  Google Scholar 

  32. Bernal, S.A., Mejia de Gutiérrez, R., Provis, J.L., Rose, V.: Effect of silicate modulus and metakaolin incorporation on the carbonation of alkali silicate-activated slags. Cem. Concr. Res. 40(6), 898–907 (2010)

    Article  Google Scholar 

  33. Bernal, S.A., Provis, J.L., Rose, V., Mejía de Gutiérrez, R.: Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33(1), 46–54 (2011)

    Article  Google Scholar 

  34. Bernal, S.A., Rodríguez, E.D., Mejía de Gutiérrez, R., Gordillo, M., Provis, J.L.: Mechanical and thermal characterization of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46(16), 5477–5486 (2011)

    Article  Google Scholar 

  35. Sikafume®—product data sheet. http://www.sika.com.my/my-con-pds-sikafume.pdf. Accessed 27 May 2011

  36. Puzosil project: Sílice amorfa de cascarilla de arroz obtenida por un métodotermoquímico como material cementicio suplementario, Proyectos de Investigación, Desarrollo Tecnológico e Innovación, Colciencias, Arrocera La Esmeralda y Grupo de Investigación Materiales Compuestos—Universidad Del Valle (2008)

  37. Salas, A., Delvasto, S., Mejía de Gutiérrez, R., Lange, D.: Comparison of two processes for treating rice husk ash for use in high performance concrete. Cem. Concr. Res. 39, 773–778. (2009)

  38. Rodríguez, E., Mejía de Gutiérrez, R., Bernal, S., Gordillo, M.: Síntesis y caracterización de polímeros inorgánicos obtenidos a partir de la activación alcalina de un metacaolín de elevada pureza. Rev. Latin. Metal. Mater. S1(2), 595–600 (2009)

    Google Scholar 

  39. Wang, S.-D., Scrivener, K.L.: 29Si and 27Al NMR study of alkali-activated slag. Cem. Concr. Res. 33, 769–774 (2003)

    Article  Google Scholar 

  40. Fernández-Jiménez, A., Puertas, F., Sobrados, I., Sanz, J.: Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J. Am. Ceram. Soc. 86(8), 1389–1394 (2003)

    Article  Google Scholar 

  41. Duxson, P., Provis, J.L., Lukey, G.C., Mallicoat, S.W., Kriven, W.M., van Deventer, J.S.J.: Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A 269(1–3), 47–58 (2005)

    Article  Google Scholar 

  42. Bernal, S., Mejía de Gutiérrez, R., Rodríguez, E., Esguerra, J.: Behaviour at elevated temperatures of sustainable cement based on an industrial by-product using alkali silica fume activator. In: Proceedings of the 23rd International Conference on Solid Waste Technology and Management, Philadelphia, USA (2008)

  43. Criado, M., Fernández-Jiménez, A., de la Torre, A.G., Aranda, M.A.G., Palomo, A.: An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res. 37, 671–679 (2007)

    Article  Google Scholar 

  44. Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: The effect of silica availability on the mechanism of geopolymerisation. Cem. Concr. Res. 41(3), 210–216 (2011)

    Article  Google Scholar 

  45. Hajimohammadi, A., Provis, J.L., van Deventer, J.S.J.: Effect of alumina release rate on the mechanism of geopolymer gel formation. Chem. Mater. 22(18), 5199–5208 (2010)

    Article  Google Scholar 

  46. Rodríguez, E.: Effect of Si/Al/Na/Ca ratio in geopolymeric materials based on metakaolin. Master thesis, Universidad del Valle, Cali, Colombia (2008)

  47. Farmer, V.C.: The infrared spectra of minerals. Mineralogical Society Monogram 4, London (1974)

  48. Kakali, G., Perraki, T., Tsivilis, S., Badogiannis, E.: Thermal treatment of kaolin: the effect of mineralogy on the pozzolanic activity. Appl. Clay. Sci. 20(1–2), 73–80 (2001)

    Article  Google Scholar 

  49. Torres, J.: Efecto de la amorficidad del metacaolín en las propiedades mecánicas y de durabilidad de morteros y concretos adicionados. Doctoral thesis, Universidad del Valle, Cali, Colombia (2005)

  50. Lee, W.K.W., van Deventer, J.S.J.: Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir 19(21), 8726–8734 (2003)

    Article  Google Scholar 

  51. Lecomte, I., Henrist, C., Liegeois, M., Maseri, F., Rulmont, A., Cloots, R.: (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. J. Eur. Ceram. Soc. 26, 3789–3797 (2006)

    Article  Google Scholar 

  52. García-Lodeiro, I., Macphee, D.E., Palomo, A., Fernández-Jiménez, A.: Effect of alkalis on fresh C-S-H gels. FTIR analysis. Cem. Concr. Res. 39, 147–153 (2009)

    Article  Google Scholar 

  53. García-Lodeiro, I., Fernández-Jiménez, A., Palomo, A., Macphee, D.E.: Effect on fresh C-S-H gels of simultaneous addition of alkali and aluminum. Cem. Concr. Res. 40, 27–32 (2010)

    Article  Google Scholar 

  54. Provis, J.L., Yong, S.L., Duxson, P., van Deventer, J.S.J.: Geopolymer structures and kinetics: what have we learnt lately? In: 3rd International Symposium on Non-Traditional Cement and Concrete, pp. 589–597. Brno, Czech Republic (2008)

  55. Duxson, P., Lukey, G.C., Separovic, F., van Deventer, J.S.J.: Effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 44(4), 832–839 (2005)

    Article  Google Scholar 

  56. Rowles, M., O’Connor, B.: Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. J. Mater. Chem. 13, 1161–1165 (2003)

    Article  Google Scholar 

  57. Alarcon-Ruiz, L., Platret, G., Massieu, E., Ehrlacher, A.: The use of thermal analysis in assessing the effect of temperature on a cement paste. Cem. Concr. Res. 35(3), 609–613 (2005)

    Article  Google Scholar 

Download references

Acknowledgments

This study was sponsored by Universidad del Valle (Colombia), the Center of Excellence of Novel Materials (CENM) and Patrimonio Autónomo Fondo Nacional de Financiamiento para la Ciencia, la Tecnología y la Innovación “Francisco José de Caldas” Contrato RCNo. 275-2011. The participation of JLP was funded by the Australian Research Council (ARC), including partial funding through the Particulate Fluids Processing Centre, a Special Research Centre of the ARC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Susan A. Bernal or John L. Provis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bernal, S.A., Rodríguez, E.D., Mejia de Gutiérrez, R. et al. Activation of Metakaolin/Slag Blends Using Alkaline Solutions Based on Chemically Modified Silica Fume and Rice Husk Ash. Waste Biomass Valor 3, 99–108 (2012). https://doi.org/10.1007/s12649-011-9093-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-011-9093-3

Keywords

Navigation