Skip to main content
Log in

Experimental Investigation of Lignin Decomposition and Char Structure During CO2 and H2O/N2 Gasification

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

Characterization of the char pore structure resulting from thermal decomposition of lignin during TGA processing in both CO2 and H2O/N2 media was performed using an Hitachi 4700 scanning electron microscope. Lignin, the more thermally resilient structural component of ligno-cellulosic biomass feedstocks, was found to undergo more complete conversion to volatiles during thermal processing in a CO2 as compared to a H2O/N2 gasification medium. The pyrolytic char created during CO2 thermal treatment exhibited a more porous surface and an intricate channel structure that enabled the CO2 molecules to access the inner volume and provided a channel network for escaping volatiles. This resulted in a more complete solid to gas conversion of the char during CO2 gasification. Both a greater surface pore density and a wider pore size distribution was observed in those chars undergoing thermal decomposition in CO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. EPA climate change—human related sources and sinks of CO2. http://www.epa.gov/climatechange/emissions/co2_human.html

  2. Butterman, H.C., Castaldi, M.J.: Influence of CO2 injection on biomass gasification. Ind. Eng. Chem. Res. 46, 8875–8886 (2007)

    Article  Google Scholar 

  3. Butterman, H.C., Castaldi, M.J.: CO2 as a carbon neutral fuel source via enhanced biomass gasification. Environ. Sci. Technol. 43, 9030–9037 (2009)

    Article  Google Scholar 

  4. Borregard Chemical Manufacturer—a global leader in production of wood-based chemicals. http://www.borregaard.com/

  5. Wolter, K.E., Harkin, J.M., Kirk, T.K.: Guaiacyl lignin associated with vessels in aspen callus cultures. Physiol. Plant. 31, 140–143 (2006)

    Article  Google Scholar 

  6. Ochoa, J., Casanello, M.C., Bonelli, P.R., Cukierman, A.L.: CO2 gasification of Argentinean coal chars: a kinetic characterization. Fuel Process. Technol. 74, 161–176 (2001)

    Article  Google Scholar 

  7. Ye, D.P., Agnew, J.B., Zhang, D.K.: Gasification of a South Australian low-rank coal with carbon dioxide and steam: kinetics and reactivity studies. Fuel 77, 1209–1219 (1998)

    Article  Google Scholar 

  8. Messenbock, R.C., Dugwell, D.R., Kandiyoti, R.: CO2 and steam-gasification in a high pressure wire-mesh reactor: the reactivity of Daw Mill coal and combustion reactivity of its chars. Fuel 78, 781–793 (1999)

    Article  Google Scholar 

  9. Zhang, L., Huang, J., Fang, Y., Wang, Y.: Gasification reactivity and kinetics of typical Chinese anthracite chars with steam and CO2. Energy Fuels 20, 1201–1210 (2006)

    Article  Google Scholar 

  10. Dutta, S., Wen, C.Y.: Reactivity of coal and char. 1. In carbon dioxide atmosphere. Ind. Eng. Chem. Process Des. Dev. 16, 20–30 (1977)

    Article  Google Scholar 

  11. Marquez-Montesinos, F., Cordero, T., Rodriguez-Mirasol, J., Rodriguez, J.J.: CO2 and steam gasification of a grapefruit skin char. Fuel 81, 423–429 (2002)

    Article  Google Scholar 

  12. Miura, K., Hashimoto, K., Silveston, P.L.: Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity. Fuel 68, 1461–1475 (1989)

    Article  Google Scholar 

  13. Feng, B., Bhatia, S.K.: On the validity of thermogravimetric determination of carbon gasification kinetics. Chem. Eng. Sci. 57, 2907–2920 (2002)

    Article  Google Scholar 

  14. Feng, B., Bhatia, S.K.: Variation of the pore structure of coal chars during gasification. Carbon 41, 507–523 (2003)

    Article  Google Scholar 

  15. Arenillas, A., Cuervo, S., Dominguez, A., Menendez, J.A., Rubiera, F., Parra, J.B., Merino, C., Pis, J.J.: Effects of oxidative treatments with air and CO2 on vapour grown carbon nanofibres (VGCNFs) produced at industrial scale. Thermochim. Acta 423, 99–106 (2004)

    Article  Google Scholar 

  16. Parra, J.B., de Sousa, J.C., Pis, J.J., Pajares, J.A., Bansal, R.C.: Effect of gasification on the porous characteristics of activated carbons from a semi-anthracite. Carbon 33, 801–807 (1995)

    Article  Google Scholar 

  17. Aarna, I., Suuberg, E.M.: Changes in reactive surface area and porosity during char oxidation. Proc. Combust. Inst. 27, 2933–2939 (1998)

    Google Scholar 

  18. Suuberg, E.M., Aarna, I.: Porosity development in carbons derived from scrap automobile tires. Carbon 45, 1719–1726 (2007)

    Article  Google Scholar 

  19. Butterman, H.C., Castaldi, M.J.: Syngas production via CO2 enhanced gasification of biomass fuels. Environ. Eng. Sci. 26, 703–713 (2009)

    Article  Google Scholar 

  20. Butterman, H.C., Castaldi, M.J.: CO2 enhanced steam gasification of biomass fuels. In: 16th NAWTEC Conf., Philadelphia (May 2008)

  21. Sigma Aldrich Chemicals, Technical Services Product Specification Sheets: Alkali, Organosolv and Hydrolytic Lignins [Revised], St. Louis, MO, 1998

  22. Brosse, N., Sannigrahi, P., Ragauskas, A.: Pretreatment of Miscanthus × giganteus using the ethanol organosolv process for ethanol production. Ind. Eng. Chem. Res. 48, 8328–8334 (2009)

    Article  Google Scholar 

  23. Pan, X., Gilkes, N., Kadla, J., Pye, K., Saka, S., Gregg, D., Ehara, K., Xie, D., Lam, D., Saddler, J.: Bioconversion of hybrid poplar to ethanol and co-products using an organosolv fractionation process: optimization of process yields. Biotechnol. Bioeng. 94, 851–861 (2006)

    Article  Google Scholar 

  24. McDonough, T.J.: The chemistry of organosolv delignification. Paper#455, TAPPI solvent pulping seminar, Boston, Nov 1992

  25. Clark, J.H., Deswarte, F.E.I. (eds.): Introduction to Chemicals from Biomass. Wiley, UK (2008)

    Google Scholar 

  26. El Hage, R., Brosse, N., Sannigrahi, P., Ragauskas, A.: Effects of process severity on the chemical structure of Miscanthus ethanol organosolv lignin. Polym. Degrad. Stab. 95, 997–1003 (2010)

    Article  Google Scholar 

  27. U.S. D.O.E. Energy efficiency and renewable energy biomass program: biomass feedstock composition and property database. http://www1.eere.energy.gov/biomass/feedstock_databases.html, http://www1.eere.energy.gov/biomass/feedstock_glossary.html (2010). Accessed July 2010

  28. Smith, K.L., Smoot, L.D., Fletcher, T.H., Pugmire, R.J.: The Structure and Reaction Processes of Coal. Plenum Press, New York (1994)

    Google Scholar 

  29. Laurendeau, N.M.: Heterogeneous kinetics of coal char gasification and combustion. Prog. Energy Combust. Sci. 4, 221–270 (1978)

    Article  Google Scholar 

  30. Sjostrom, E.: Wood chemistry fundamentals and applications, 2nd edn. Academic Press, San Diego (1993)

    Google Scholar 

  31. Butterman, H.C., Castaldi, M.J.: Biomass to fuels: impact of reaction medium and heating rate. Environ. Eng. Sci. 27, 539–555 (2010)

    Article  Google Scholar 

  32. Della Rocca, P.A., Cerrella, E.G., Bonelli, P.R., Cukierman, A.L.: Pyrolysis of hardwoods residues: on kinetics and chars characterization. Biomass Bioenergy 16, 79–88 (1999)

    Article  Google Scholar 

  33. Rodriguez-Reinoso, F., Molina-Sabio, M., Gonzalez, M.T.: The use of steam and CO2 as activating agents in the preparation of activated carbons. Carbon 33, 15–23 (1995)

    Article  Google Scholar 

  34. Sorensen, H.S., Rosenberg, P., Petersen, H.I., Sorensen, L.H.: Char porosity characterisation by scanning electron microscopy and image analysis. Fuel 79, 1379–1388 (2000)

    Article  Google Scholar 

  35. Hurt, R.H., Sarofim, A.F., Longwell, J.P.: The role of microporous surface area in the gasification of chars from a sub-bituminous coal. Fuel 70, 1079–1082 (1991)

    Article  Google Scholar 

  36. Radovic, L.R., Walker Jr., P.L., Jenkins, R.G.: Importance of carbon active sites in the gasification of coal chars. Fuel 62, 849–856 (1983)

    Article  Google Scholar 

  37. Scott, S.A., Davidson, J.F., Dennis, J.S., Fennell, P.S., Hayhurst, A.N.: The rate of gasification by CO2 of chars from waste. Proc. Combust. Inst. 30, 2151–2159 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heidi C. Butterman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Butterman, H.C., Castaldi, M.J. Experimental Investigation of Lignin Decomposition and Char Structure During CO2 and H2O/N2 Gasification. Waste Biomass Valor 3, 49–60 (2012). https://doi.org/10.1007/s12649-011-9086-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-011-9086-2

Keywords

Navigation