Skip to main content
Log in

Fluorene Removal by Biosurfactants Producing Bacillus megaterium

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript


This paper describes the study of a surfactant-producing bacterial strain of Bacillus megaterium. The study determined the conditions that favor the production of surfactant and how this bacterial strain functions in the biodegradation of fluorene. Crude biosurfactant was produced from B. megaterium on mineral salt media (MSM) supplemented with either acetate ammonium (MSM-AA) or crude oil (MSM-CO) as sole carbon source. The B. megaterium showed the highest crude biosurfactant yield (2.99 ± 0.11 g L−1) when grown on MSM-AA, while a yield of 2.63 ± 0.04 g L−1 was found on MSM-CO. Biosurfactant activities were observed in both media with a 35.68 ± 1.05 and 28.48 ± 0.39 mN/m reduction in surface tension when using acetate ammonium and crude oil, respectively. FTIR spectroscopy showed that carbon substrates induce the same glycolipid classes for both MSM-AA and MSM-CO. The results clearly demonstrated that carbon substrates affect biosurfactant production in terms of yield, and that the increase of fluorene removal by approximately 1.5 and 2 compared to the control was due to the presence of the amended crude biosurfactant from MSM-AA and MSM-CO, respectively, after 28 days.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others


  1. Bincova, B., Sram, R.J.: The genotoxic effect of carcinogenic PAHs, their artificial and environmental mixture (OEM) of human diploid lung fibroblasts. Mutation Res 547, 109–121 (2004)

    Article  Google Scholar 

  2. Garcia-Junco, M., De Olmedo, E., Ortego-Calvo, J.-J.: Bioavailability of solid and non-aqueous phase liquid-dissolved phenanthrene to the biosurfactant-producing bacterium Pseudomonas aeruginosa 19SJ. Environ. Microbiol. 3, 561–569 (2001)

    Article  Google Scholar 

  3. Moore, J.W., Ramamoorthy, S. (eds.): Aromatic hydrocarbons-polycyclics. In: Organic Chemicals in Natural Waters: Applied Monitoring and Impact Assessment, pp. 67–87. Springer, New York (1984)

  4. Stevens, J.L., Northcott, G.L., Stern, G.A., Tomy, G., Jones, K.C.: PAHs, PCBs, PCNs, organochlorine pesticides, synthetic musks and polychlorinated n-alkanes in UK sewage sludge: survey results and implications. Environ. Sci. Technol. 37, 462–467 (2003)

    Article  Google Scholar 

  5. Cerniglia, C.E.: Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3, 351–368 (1992)

    Article  Google Scholar 

  6. Kumar, M., Leon, V., Materano, A.D.S., Ilzins, O.A., Castro, I.G., Fuenmayor, S.L.: Polycyclic aromatic hydrocarbon degradation by biosurfactant-producing Pseudomonas sp. IR1. Z. Naturforsch 61c, 203–212 (2006)

    Google Scholar 

  7. Makkar, R.S., Rockne, K.J.: Comparison of synthetic surfactant and biosurfactant in enhancing biodegradation of polycyclic aromatic hydrocarbons. Environ. Toxicol. Chem. 22(10), 2280–2292 (2003)

    Article  Google Scholar 

  8. Cameotra, S.S., dan Singh, P.: Bioremediation of oil sludge using crude biosurfactants. Int. Biodeterior. Biodegradation 62, 274–280 (2008)

    Article  Google Scholar 

  9. Lin, Y., Cai, Li.-Xi.: PAH-degrading microbial consortium and its pyrene-degrading plasmids from Mangrove sediment samples in Huaian, China. Mar. Pollut. Bull. 57, 703–706 (2008)

    Article  Google Scholar 

  10. Page, C.A., Bonner, J.S., Kanga, S.A., Mills, M.A., Autenrieth, R.L.: Biosurfactant solubilization of PAH. Environ. Eng. Sci. 16(6), 465–474 (1999)

    Article  Google Scholar 

  11. Syakti, A.D., Yani, M., Hidayati, N.V., Sudiana, I.M.: PAH-degraders marine bacteria isolated from chronically contaminated sediment by petroleum hydrocarbons. In: Proceedings on National Conference of Indonesian Microbiologist Association (PERMI), University of Jenderal Soedirman, Purwokero, Indonesia (2008)

  12. Thavasi, R., Jayalakshmi, S., Balasubramania, T., Banat, I.M.: Production and characterization of a glycolipid biosurfactant from Bacillus megaterium using economically cheaper sources. World J. Microbiol. Biotechnol. 24, 917–925 (2008)

    Article  Google Scholar 

  13. Rodrigues, L., Moldes, A., Teixeira, J., Oliveira, R.: Kinetic study of fermentative biosurfactant production by Lactobacillus strains. Biochem. Eng. J. 28, 109–116 (2006)

    Article  Google Scholar 

  14. Pearlman, R.S., Yalkowsky, S.H., Banerjee, S.: Water solubilities of polynuclear aromatic and heteroaromatic compounds. J. Phys. Chem. Ref. Data 13, 555–562 (1984)

    Article  Google Scholar 

  15. Syakti, A.D., Acquaviva, M., Gilewizc, M., Doumenq, P., Bertand, J.-C.: Comparison of n-eicosane and phenanthrene degradation by pure and mixed cultured of two marine bacteria. Environ. Res. 96, 206–218 (2004)

    Article  Google Scholar 

  16. Perfumo, A., Banat, I.M., Canganella, F., Marchant, R.: Rhamnolipid production by a novel thermophilic hydrocarbons-degrading Pseudomonas aeruienosa APO21. Appl. Micobiol. Biotechnol. 72, 132–138 (2006)

    Article  Google Scholar 

  17. Das, P., Mukherjee, S., Sen, R.: Antimicrobial potential of lipopeptide biosurfactants derived from a marine Bacillus circulans. J. Appl. Microbiol. 104(6), 1675–1684 (2008)

    Article  Google Scholar 

  18. Kitamoto, D., Isoda, H., Nakahara, T.: Functions and potential applications of glycolipid biosurfactants from energy-saving materials to gene delivery carriers. J. Biosci. Bioeng. 94(3), 187–201 (2002)

    Google Scholar 

  19. Zhang, G., Yue-ting, W., Qian, X., Meng, Q.: Biodegradation of crude oil by Pseudomonas aeruginosa in the presence of rhamnolipids. J. Zhejiang Univ. Sci. B. 6(8), 725–730 (2005)

    Article  Google Scholar 

  20. Goutx, M., Acquaviva, M., Bertrand, J.C.: Cellular and extracellular carbohydrates and lipids from marine bacteria during growth on soluble substrates and hydrocarbons. Marines Ecol. Prog. Ser. 61, 291–296 (1990)

    Article  Google Scholar 

  21. Ron, E.Z., Rosenberg, E.: Natural roles of biosurfactants. Environ. Microbiol. 3(4), 229–236 (2001)

    Article  Google Scholar 

  22. Brandenburg, K., Seydel, U.: Infrared spectroscopy of glycolipids. Chem. Phys. Lipids 96, 23–40 (1998)

    Article  Google Scholar 

  23. Christova, N., Tuleva, B., Lalchev, Z., Jordanova, A., Jordanov, B.: Rhamnolipid biosurfactants produced by Renibacterium salmoninarum 27BN during growth on n-hexadecane. Z. Naturforsch. 59c, 70–74 (2004)

    Google Scholar 

  24. Desai, J.D., Desai, A.J.: Production of biosurfactants. In: Kosaric, N. (ed.) Biosurfactants : Production, Properties, Application, pp. 65–97. Marcel Dekker Inc. (1993)

  25. Muthusamy, K., Gopalakrishnan, S., Ravi, T.K., Sivachidambaran, K.: Biosurfactants : properties, commercial production and application. Current Sci. 94(6), 736–747 (2008)

    Google Scholar 

  26. Gomes, R.C.B., Nogueira, R., Oliveira, J.M., Peixoto, J., Brito, A.G.: Kinetics of fluorene biodegradation by a mixed culture. In: Ubarini, L. (ed.) Proceeding of the IASTED International Conference on Advanced Technology in the Environmental Fields, pp. 84–87. Acta Press, Lanzarote, Spain, 6–8 February (2006)

  27. Beal, R., Betts, W.B.: Role of rhamnolipid biosurfactants in the uptake and mineralization of hexadecane in Pseudomonas aeruginosa. J. Appl. Microbiol. 89, 158–168 (2000)

    Article  Google Scholar 

  28. Cubitto, M.A., Morán, A.C., Commendatore, M., Chiarello, M.N., Baldini, M.D., Siñeriz, F.: Effects of Bacillus subtilis O9 biosurfactant on the bioremediation of crude-polluted soils. Biodegradation 5, 281–287 (2004)

    Article  Google Scholar 

  29. Hickey, A.M., Gordon, L., Dobson, A.D.W., Kelly, C.T., Doyle, E.M.: Effect of surfactants on fluoranthene degradation by Pseudomonas alcaligenes PA-10. Appl. Microbiol. Biotechnol. 74, 851–856 (2007)

    Article  Google Scholar 

  30. Rahman, K.S.M., Street, G., Lord, R., Kane, G., Rahman, T.J., Marchant, R., Banat, I.M.: Bioremediation of Petroleum sludge using bacterial consortium with biosurfactant. Final report. University of Teesside, UK (2005)

    Google Scholar 

  31. Lauren, L.A., Buggs, V.H., Eastep, M.E., Enriquez, R.C., Leonard, J.N., Blaylock, M.J., Huang, J-W, and Häggblon, M.M.: Bioremediaion of polyaromatic hydrocarbons-contaminated sediments in aerated bioslurry reactors. Bioremediat J. 1547–6529, 6(1), 125–141 (2002)

    Google Scholar 

Download references


This work was supported by grants from the International Foundation for Sciences (IFS), Sweden Grantee A/3866-1 for Dr. Agung D. Syakti. The authors wish to thank the Indonesian National Education Ministry for BPPS studentship for Mrs. N. V. Hidayati. The authors would also thank Mrs. Deborah Wirick for her rereading of the manuscript. We also thank the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Agung Dhamar Syakti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hidayati, N.V., Hilmi, E., Haris, A. et al. Fluorene Removal by Biosurfactants Producing Bacillus megaterium . Waste Biomass Valor 2, 415–422 (2011).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: