Skip to main content
Log in

Preparation of Free-Template Nanometer-Sized Na–A and –X Zeolites From Rice Husk Ash

  • Original Paper
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

The main objective of the present study was to synthesize nanozeolite Na–A by a hydrothermal method with extracted silica from rice husk ash as source in order to reduce the mean particle size of zeolite Na–A as well as crystallization conditions by keeping the economic interactive in mind. High-grade amorphous silica was extracted from rice husk ash by an appropriate alkali solution. Amorphous extracted silica powder was composed of 88% wt of SiO2. The effects of Na2O/SiO2 ratio in the initial system, the crystallization condition, crystallization time, crystallization temperature and shaking conditions (static, stirring and shaking) on the properties of final products were investigated. Various techniques including X-ray diffraction, scanning electron microscope, energy dispersive X-ray, N2 adsorption/desorption and Fourier transform infrared were then applied for characterization of the synthesized products. The results showed that the crystallization condition and alkalinity have a significant effect on the structural properties of the synthesized nanozeolite Na–A. Without adding any organic additives, nanocrystals of Na–A ranging from 40 to 120 nm in size were synthesized at 40°C and with 18 h aging, whereby crystals with a specific surface area of 36.9 m2 g−1 and an average pore diameter of 10.6 nm (using BJH method) were obtained. Na–X nanocrystals with crystallite size ranging from 70 to 260 nm were obtained from a sodium aluminosilicate solution at 60°C after 2 days in static crystallization condition, whereby crystals with a specific surface area of 89.9 m2 g−1 and an average pore diameter of 9.2 nm (using BJH method) were obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Barrer, R.M.: Hydrothermal Chemistry of Zeolites. Academic Press, London (1982)

    Google Scholar 

  2. Breck, D.W.: Zeolite Molecular Sieves. Wiley, London (1974)

    Google Scholar 

  3. Grace, Co: Method of Analysis for Fluid Cracking Catalysts. Davison Chemicals, Baltimore (1980)

    Google Scholar 

  4. Huang, L., Wang, Z., Sun, J., et al.: Fabrication of ordered porous structures by self-assembly of zeolite nanocrystals. J. Am. Chem. Soc. 122(14), 3530–3531 (2000)

    Article  Google Scholar 

  5. Boudreau, L.C., Kuck, J.A., Tsapatsis, M.: Deposition of oriented zeolite A films: in situ and secondary growth. J. Membr. Sci. 152(1), 41–59 (1999)

    Article  Google Scholar 

  6. Cho, G., Lee, J.-S., Glatzhofer, D.T., Fung, B.M., Yuan, W.L., OrsquoRear, E.A.: Ultra-thin zeolite films through simple self-assembled processes. Adv. Mater. 11(6), 497–499 (1999)

    Article  Google Scholar 

  7. Islam, M.N., Ani, F.N.: Techno-economics of rice husk pyrolysis, conversion with catalytic treatment to produce liquid fuel. Bioresour. Technol. 73(1), 67–75 (2000)

    Article  Google Scholar 

  8. Fuad, M.Y.A., Ismail, Z., Ishak, Z.A.M., Omar, A.K.M.: Application of rice husk ash as fillers in polypropylene: effect of titanate, zirconate and silane coupling agents. Eur. Polym. J. 31(9), 885–893 (1995)

    Article  Google Scholar 

  9. Yalçin, N., Sevinç, V.: Studies on silica obtained from rice husk. Ceram. Inter. 27(2), 219–224 (2001)

    Article  Google Scholar 

  10. Sun, L., Gong, K.: Silicon-based materials from rice husks and their applications. Ind. Eng. Chem. Res. 40(25), 5861–5877 (2001)

    Article  Google Scholar 

  11. Kalapathy, U., Proctor, A., Shultz, J.: An improved method for production of silica from rice hull ash. Biores. Technol. 85(3), 285–289 (2002)

    Article  Google Scholar 

  12. Ramli, Z.: Rhenium-Impregnated Zeolites: Synthesis, Characterization and Modification Ascatalysts in the Metathesis of Alkanes. Universiti Teknologi, Malaysia (1995)

    Google Scholar 

  13. Nur, H.: Direct synthesis of NaA zeolite from rice husk and carbonaceous rice husk ash. Indonesian J. Agric. Sci. 1, 40–45 (2001)

    Google Scholar 

  14. Prasetyoko, D., Ramli, Z., Endud, S., Hamdan, H., Sulikowski, B.: Conversion of rice husk ash to zeolite beta. Waste Manage. 26(10), 1173–1179 (2006)

    Article  Google Scholar 

  15. Rawtani, A.V., Rao, M.S., Gokhale, K.V.G.K.: Synthesis of ZSM-5 zeolite using silica from rice-husk ash. Ind. Eng. Chem. Res. 28(9), 1411–1414 (2002)

    Article  Google Scholar 

  16. Mohamed, M.M., Zidan, F.I., Thabet, M.: Synthesis of ZSM-5 zeolite from rice husk ash: characterization and implications for photocatalytic degradation catalysts. Microporous Mesoporous Mater. 108(1–3), 193–203 (2008)

    Article  Google Scholar 

  17. Kordatos, K., Gavela, S., Ntziouni, A., Pistiolas, K.N., Kyritsi, A., Kasselouri-Rigopoulou, V.: Synthesis of highly siliceous ZSM-5 zeolite using silica from rice husk ash. Microporous Mesoporous Mater. 115(1–2), 189–196 (2008)

    Article  Google Scholar 

  18. Loiha, S., Prayoonpokarach, S., Songsiriritthigun, P., Wittayakun, J.: Synthesis of zeolite beta with pretreated rice husk silica and its transformation to ZSM-12. Mater. Chem. Phys. 115(2–3), 637–640 (2009)

    Article  Google Scholar 

  19. Valtchev, V.P., Bozhilov, K.N.: Evidences for zeolite nucleation at the solid–liquid interface of gel cavities. J. Am. Chem. Soc. 127(46), 16171–16177 (2005)

    Article  Google Scholar 

  20. Tsapatsis, M., Lovallo, M., Okubo, T., Davis, M.E., Sadakata, M.: Characterization of zeolite L Nanoclusters. Chem. Mater. 7(9), 1734–1741 (2002)

    Article  Google Scholar 

  21. Fan, W., Morozumi, K., Kimura, R., Yokoi, T., Okubo, T.: Synthesis of nanometer-sized sodalite without adding organic additives. Langmuir 24(13), 6952–6958 (2008)

    Article  Google Scholar 

  22. Smaihi, M., Barida, O., Valtchev, V.: Investigation of the crystallization stages of LTA-type zeolite by complementary characterization techniques. Eur. J. Inorg. Chem. 2003(24), 4370–4377 (2003)

    Article  Google Scholar 

  23. Mintova, S., Valtchev, V.: On the crystallization mechanism of zeolite ZSM-5: part 1. Kinetic compensation effect for the synthesis with some diamines. Zeolites 13(4), 299–304 (1993)

    Google Scholar 

  24. Feoktistova, N.N., Zhdanov, S.P., Lutz, W., Büllow, M.: On the kinetics of crystallization of silicalite I. Zeolites 9(2), 136–139 (1989)

    Article  Google Scholar 

  25. Mintova, S., Olson, N.H., Valtchev, V., Bein, T.: Mechanism of zeolite A nanocrystal growth from colloids at room temperature. Science 283(5404), 958–960 (1999)

    Article  Google Scholar 

  26. Zhan, B.-Z., White, M.A., Lumsden, M., et al.: Control of particle size and surface properties of crystals of NaX zeolite. Chem. Mater. 14(9), 3636–3642 (2002)

    Article  Google Scholar 

  27. Ghasemi, Z., Younesi, H.: Preparation and characterization of nanozeolite NaA from rice husk at room temperature without organic additives. J Nanomater. 2011, 1–8 (2011)

  28. Ghasemi, Z., Younesi, H., Kazemian, H.: Synthesis of nanozeolite sodalite from rice husk ash without organic additives. Can. J. Chem. Eng. 89(3), 601–608 (2011)

    Article  Google Scholar 

  29. Yu, J.: Synthesis of zeolites. Introd. Zeolite Sci. Pract. 168, 39–103 (2007)

    Article  Google Scholar 

  30. Krishnarao, R.V., Subrahmanyam, J., Kumar, T.J.: Studies on the formation of black particles in rice husk silica ash. J. Eur. Ceram. Soc. 21(1), 99–104 (2001)

    Article  Google Scholar 

  31. Chisholm, J.: Comparison of quartz standards for X-ray diffraction analysis: HSE A9950 (Sikron F600) and NIST SRM 1878. Ann. Occup. Hig. 49(4), 351–358 (2005)

    Article  Google Scholar 

  32. Kalapathy, U., Proctor, A., Shultz, J.: A simple method for production of pure silica from rice hull ash. Biores. Technol. 73(3), 257–262 (2000)

    Article  Google Scholar 

  33. Paya, J., Monz, J., Borrachero, M.V., Mellado, A., Ordoez, L.M.: Determination of amorphous silica in rice husk ash by a rapid analytical method. Cem. Concr. Res. 31(2), 227–231 (2001)

    Article  Google Scholar 

  34. Valtchev, V.P., Tosheva, L., Bozhilov, K.N.: Synthesis of zeolite nanocrystals at room temperature. Langmuir 21(23), 10724–10729 (2005)

    Article  Google Scholar 

  35. Flanigen, E.M., Lok, B.M., Patton, R.L., Wilson, S.T., Murakami, Y., Lijima, A., Ward, J.W.: Aluminophosphate molecular sieves and the periodic table. In: Studies in Surface Science and Catalysis, pp. 103–112. Elsevier, Amsterdam (1986)

  36. Yu, J., Cejka, J., van Bekkum, H., Cormma, A, Ferdi, S.: Chapter 3 synthesis of zeolites. In: Studies in Surface Science and Catalysis, pp. 39–103. Elsevier, Amsterdam (2007)

  37. Treacy, M.M.J., Higgins. J.B.: Linde type A, hydrated. In: Collection of Simulated XRD Powder Patterns for Zeolites (fifth), pp. 252–253. Elsevier, Amsterdam (2007)

  38. Wang, C.-F., Li, J.-S., Wang, L.-J., Sun, X.-Y.: Influence of NaOH concentrations on synthesis of pure-form zeolite A from fly ash using two-stage method. J. Hazard. Mater. 155(1–2), 58–64 (2008)

    Article  Google Scholar 

  39. Hui, K.S., Chao, C.Y.H.: Effects of step-change of synthesis temperature on synthesis of zeolite 4A from coal fly ash. Microporous Mesoporous Mater. 88(1–3), 145–151 (2006)

    Article  Google Scholar 

  40. Kleitz, F., Marlow, F., Stucky, G.D., Schuth, F.: Mesoporous Silica fibers: synthesis, internal structure, and growth kinetics. Chem. Mater. 13(10), 3587–3595 (2001)

    Article  Google Scholar 

  41. Hamilton, K.E., Coker, E.N., Sacco, A., Dixon, A.G., Thompson, R.W.: The effects of the silica source on the crystallization of zeolite NaX. Zeolites 13(8), 645–653 (1993)

    Article  Google Scholar 

  42. Jansen, J.C.: Chapter 5A the preparation of oxide molecular sieves A. Synthesis of zeolites. In: van Bekkum, H., Flanigen, E.M., Jacobs, P.A., Jansen. J.C. (eds.) Studies in Surface Science and Catalysis, pp. 175–227. Elsevier, Amsterdam (2001)

  43. Treacy, M.M.J., Higgins, J.B.: Tetrapropylammonium ZSM-5. In: Collection of Simulated XRD Powder Patterns for Zeolites (fifth), pp. 276–277. Elsevier, Amsterdam (2007)

  44. Dalai, A.K., Rao, M.S., Gokhale, K.V.G.K.: Synthesis of NaX zeolite using silica from rice husk ash. Ind. Eng. Chem. Prod. Res. Dev. 24(3), 465–468 (1985)

    Article  Google Scholar 

  45. Bondareva, G.V., Rat’ko, A.I., Azarov, S.M.: Hydrothermal synthesis of zeolite NaX on porous ceramic supports. Inorg. Mater. 39(6), 605–609 (2003)

    Article  Google Scholar 

  46. Hanif, N., Anderson, M.W., Alfredsson, V., Terasaki, O.: The effect of stirring on the synthesis of intergrowths of zeolite Y polymorphs. Phys. Chem. Chem. Phys. 2(14), 3349–3357 (2000)

    Article  Google Scholar 

  47. Tanaka, H., Matsumura, S., Hino, R.: Formation process of Na-X zeolites from coal fly ash. J. Mater. Sci. 39(5), 1677–1682 (2004)

    Article  Google Scholar 

  48. Ramli, Z., Listiorini, E., Hamdan, H.: Optimization and reactivity study of silica in the synthesis of zeolites from rice husk. J. Teknologi. 25, 27–35 (1996)

    Google Scholar 

  49. Panpa, W., Jinawath, S.: Synthesis of ZSM-5 zeolite and silicalite from rice husk ash. Appl. Catal. B Environ. 90(3–4), 389–394 (2009)

    Article  Google Scholar 

  50. Katsuki, H., Komarneni, S.: Synthesis of Na–A and/or Na–X zeolite/porous carbon composites from carbonized rice husk. J. Solid State Chem. 182(7), 1749–1753 (2009)

    Article  Google Scholar 

  51. Liou, T.-H.: Preparation and characterization of nano-structured silica from rice husk. Mater. Sci. Eng. A 364(1–2), 313–323 (2004)

    Google Scholar 

  52. Yusa, A., Ohgushi, T., Takaishi, T.: Application of percolation theory to ion-exchanged molecular sieves A. J. Phys. Chem. Solids 38(11), 1233–1236 (1977)

    Article  Google Scholar 

  53. Thommes, M., Cejka, J., van Bekkum, H., Cormma, A, Ferdi, S.: Chapter 15 textural characterization of zeolites and ordered mesoporous materials by physical adsorption. In: Studies in Surface Science and Catalysis, vol. XIII, pp. 495–523. Elsevier, Amsterdam (2007)

  54. Flanigen, E.M., Khatami, H., Szymanski, H.A.: Infrared structural studies of zeolite frameworks. In: Molecular Sieve Zeolites-I, pp. 201–229. American Chemical Society, Washington (2009)

  55. Szostak, R.: Molecular Sieves: Principles of Synthesis and Identification. Van Nostrand Reinhold, New York (1989)

    Google Scholar 

  56. Ismail, A.A., Mohamed, R.M., Fouad, O.A., Ibrahim, I.A.: Synthesis of nanosized ZSM-5 using different alumina sources. Cryst. Res. Technol. 41(2), 145–149 (2006)

    Article  Google Scholar 

  57. Pedrosa, A., Souza, M., Melo, D., Araujo, A.: Cobalt and nickel supported on HY zeolite: synthesis, characterization and catalytic properties. Mater. Res. Bull. 41(6), 1105–1111 (2006)

    Article  Google Scholar 

  58. Vempati, R.K., Borade, R., Hegde, R.S., Komarneni, S.: Template free ZSM-5 from siliceous rice hull ash with varying C contents. Microporous Mesoporous Mater. 93(1–3), 134–140 (2006)

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by a research grant from Tarbiat Modares University (TMU), Iran Nanotechnology Initiative Council and SPAG Zeolite R & D Group. The authors wish to thank Mr. F. Farhadi, Mr. M. Sardari and Mr. I. Sourinejad for their technical assistance during the experiments, and Ellen Vuosalo Tavakoli for the final editing of the English text.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habibollah Younesi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ghasemi, Z., Younesi, H. Preparation of Free-Template Nanometer-Sized Na–A and –X Zeolites From Rice Husk Ash. Waste Biomass Valor 3, 61–74 (2012). https://doi.org/10.1007/s12649-011-9084-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-011-9084-4

Keywords

Navigation