Skip to main content
Log in

Alternative Low-cost Adsorbent for Water and Wastewater Decontamination Derived from Eggshell Waste: An Overview

  • Review
  • Published:
Waste and Biomass Valorization Aims and scope Submit manuscript

Abstract

As the current global trend towards more stringent environmental standards, technical applicability and cost-effectiveness became key factors in the selection of adsorbents for water and wastewater treatment. Recently, various low-cost adsorbents derived from agricultural waste, industrial by-products or natural materials, have been intensively investigated. In this respect, the eggshells from egg-breaking operations constitute significant waste disposal problems for the food industry, so the development of value-added by-products from this waste is to be welcomed. The egg processing industry is very competitive, with low profit margins due to global competition and cheap imports. Additionally, the costs associated with the egg shell disposal (mainly on landfill sites) are significant, and expected to continue increasing as landfill taxes increase. The aim of the present review is to provide an overview on the development of low-cost adsorbents derived from eggshell by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Bai, R.S., Abraham, T.E.: Studies on chromium(VI) adsorption-desorption using immobilized fungal biomass. Biores. Technol. 87, 17–26 (2003)

    Google Scholar 

  2. Pandey, A., Bera, D., Shukla, A., Ray, L.: Potential of agarose for biosorption of Cu(II) in aqueous system. Am. J. Biochem. Biotech. 3, 55–59 (2007)

    Google Scholar 

  3. Malik, P.K.: Use of activated carbons prepared from sawdust and rice-husk for adsorption of acid dyes: a case study of Acid Yellow 36. Dyes Pigm. 56, 239–249 (2003)

    Google Scholar 

  4. Mahmoodi, N.M., Arami, M., Yousefi Limaee, N., Salman Tabrizi, N.: Decolorization and aromatic ring degradation kinetics of Direct Red 80 by UV oxidation in the presence of hydrogen peroxide utilizing TiO2 as a photocatalyst. Chem. Eng. J. 112, 191–196 (2005)

    Google Scholar 

  5. Mahmoodi, N.M., Arami, M.: Bulk phase degradation of Acid Red 14 by nanophotocatalysis using immobilized titanium (IV) oxide nano particles. J. Photochem. Photobiol. A Chem. 182, 60–66 (2006)

    Google Scholar 

  6. Mahmoodi, N.M., Arami, M., Yousefi Limaee, N.: Photocatalytic degradation of triazinic ring-containing azo dye (reactive red 198) by using immobilized TiO2 photoreactor: bench scale study. J. Hazard. Mater B 133, 113–118 (2006)

    Google Scholar 

  7. Mahmoodi, N.M., Arami, M., Yousefi Limaee, N., Salman Tabrizi, N.: Kinetics of heterogeneous photocatalytic degradation of reactive dyes in an immobilized TiO2 photocatalytic reactor. J. Colloid Interface Sci. 295, 159–164 (2006)

    Google Scholar 

  8. Ozcan, A.S., Erdem, B., Ozcan, A.: Adsorption of Acid Blue 193 from aqueous solutions onto BTMA-bentonite. Colloids Surf. A 266, 73–81 (2005)

    Google Scholar 

  9. Crini, G., Peindy, H.N.: Adsorption of C.I. Basic Blue 9 on cyclodextrin-based material containing carboxylic groups. Dyes Pigm. 70, 204–211 (2006)

    Google Scholar 

  10. Crini, G.: Non-conventional low-cost adsorbents for dye removal: a review. Bioresour. Technol. 97, 1061–1085 (2006)

    Google Scholar 

  11. Gupta, V.K., Mittal, A., Kurup, L., Mittal, J.: Adsorption of a hazardous dye, erythrosine, over hen feathers. J. Colloid Interface Sci. 304, 52–57 (2006)

    Google Scholar 

  12. Crini, G., Badot, P.-M.: Application of chitosan, a natural aminopolysaccharide, for dye removal from aqueous solutions by adsorption processes using batch studies: a review of recent literature. Prog. Polym. Sci. 39, 399–447 (2008)

    Google Scholar 

  13. Pollard, S.J.T., Fowler, G.D., Sollars, C.J., Perry, R.: Low-cost adsorbents for waste and wastewater treatment: a review. Sci. Total Environ. 116, 31–52 (1992)

    Google Scholar 

  14. Gupta, V.K., Suhas, : Application of low-cost adsorbents for dye removal–A review. J. Environ. Manage. 90, 2313–2342 (2009)

    Google Scholar 

  15. Bhatnagar, A., Sillanpää, M.: Utilization of agro-industrial and municipal wastes as potential adsorbents for water treatment–A review. Chem. Eng. J. 157, 277–296 (2010)

    Google Scholar 

  16. Gupta, V.K., Rastogi, A., Nayak, A.: Biosorption of nickel onto treated alga (Oedogonium hatei): application of isotherm and kinetic models. J. Colloid Interface Sci. 342, 533–539 (2010)

    Google Scholar 

  17. Gupta, V.K., Carrott, P.J.M., Ribeiro Carrott, M.M.I., Suhas, : Low cost adsorbents: growing approach to wastewater treatment–A review. Crit. Rev. Environ. Sci Technol. 39, 783–842 (2009)

    Google Scholar 

  18. Yoshida, H., Takemori, T.: Adsorption of direct dye on cross-linked chitosan fiber: breakthrough curve. Water Sci. Technol. 35, 29–37 (1997)

    Google Scholar 

  19. Annadurai, G.: Design of optimum response surface experiments for adsorption of direct dye on chitosan. Bioprocess Eng. 23, 451–455 (2000)

    Google Scholar 

  20. Prado, A.G.S., Torres, J.D., Faria, E.A., Dias, S.C.L.: Comparative adsorption studies of indigo carmine dye on chitin and chitosan. J. Colloid Interface Sci. 277, 43–47 (2004)

    Google Scholar 

  21. Annadurai, G., Ling, L.Y., Lee, J.-F.: Adsorption of reactive dye from an aqueous solution by chitosan: isotherm, kinetic and thermodynamic analysis. J. Hazard. Mater. 152, 337–346 (2008)

    Google Scholar 

  22. Rattanaphani, S., Chairat, M., Bremner, J.B., Rattanaphani, V.: An adsorption and thermodynamic study of lac dyeing on cotton pretreated with chitosan. Dyes Pigm. 72, 88–96 (2007)

    Google Scholar 

  23. Ellis, J., Korth, W.: Removal of geosmin and methylisoborneol from drinking water by adsorption on ultrastable zeolite-Y. Water Res. 27, 535–539 (1993)

    Google Scholar 

  24. Okolo, B., Park, C., Keane, M.A.: Interaction of phenol and chlorophenols with activated carbon and synthetic zeolites in aqueous media. J. Colloid Interface Sci. 226, 308–317 (2000)

    Google Scholar 

  25. Metes, A., Kovacevic, D., Vujevic, D., Papic, S.: The role of zeolites in wastewater treatment of printing inks. Water Res. 38, 3373–3381 (2004)

    Google Scholar 

  26. Motsi, T., Rowson, N.A., Simmons, M.J.H.: Adsorption of heavy metals from acid mine drainage by natural zeolite. Int. J. Miner. Process. 92, 42–48 (2009)

    Google Scholar 

  27. Wang, S., Peng, Y.: Natural zeolites as effective adsorbents in water and wastewater treatment. Chem. Eng. J. 156, 11–24 (2010)

    Google Scholar 

  28. McKay, G., Otterburn, M.S., Aga, J.A.: Fuller earth and fired clay as adsorbents for dyestuffs–equilibrium and rate studies. Water Air Soil Pollut. 24, 307–322 (1985)

    Google Scholar 

  29. Nassar, M.M., Elgeundi, M.S.: Comparative cost of color removal from textile effluents using natural adsorbents. J. Chem. Technol. Biotechnol. 50, 257–264 (1991)

    Google Scholar 

  30. Espantaleon, A.G., Nieto, J.A., Fernandez, M., Marsal, A.: Use of activated clays in the removal of dyes and surfactants from tannery waste waters. Appl. Clay Sci. 24, 105–110 (2003)

    Google Scholar 

  31. Alkan, M., Demirbas, O., Dogan, M.: Adsorption kinetics and thermodynamics of an anionic dye onto sepiolite. Microporous Mesoporous Mater. 101, 388–396 (2007)

    Google Scholar 

  32. Ozcan, A.S., Ozcan, A.S.: Adsorption of acid dyes from aqueous solutions onto acid-activated bentonite. J. Colloid Interface Sci. 276, 39–46 (2004)

    Google Scholar 

  33. Ozcan, A., Ozcan, A.S.: Adsorption of Acid Red 57 from aqueous solutions onto surfactant-modified sepiolite. J. Hazard. Mater. 125, 252–259 (2005)

    Google Scholar 

  34. Gupta, V.K., Jain, R., Varshney, S.: Electrochemical removal of hazardous dye Reactofix Red 3 BFN from industrial effluents. J. Colloid Interface Sci. 312, 292–296 (2007)

    Google Scholar 

  35. Gupta, V.K., Rastogi, A., Dwivedi, M.K., Mohan, D.: Process development for the removal of zinc and cadmium from wastewater using slag–A blast-furnace waste material. Sep. Sci. Technol. 32, 2883–2912 (1997)

    Google Scholar 

  36. Namasivayam, C., Arasi, D.: Removal of congo red from wastewater by adsorption onto waste red mud. Chemosphere 34, 401–417 (1997)

    Google Scholar 

  37. Wang, S., Boyjoo, Y., Choueib, A., Zhu, Z.H.: Removal of dyes from aqueous solution using fly ash and red mud. Water Res. 39, 129–138 (2005)

    Google Scholar 

  38. Gupta, V.K., Ali, I., Saini, V.K.: Removal of rhodamine B, fast green, and methylene blue from wastewater using red mud, an aluminum industry waste. Ind. Eng. Chem. Res. 43, 1740–1747 (2004)

    Google Scholar 

  39. Tor, A., Cengeloglu, Y.: Removal of congo red from aqueous solution by adsorption onto acid activated red mud. J. Hazard. Mater. 138, 409–415 (2006)

    Google Scholar 

  40. Gupta, V.K., Ali, I., Saini, V.K.: Removal of chlorophenols from wastewater using red mud: an aluminum industry waste. Environ. Sci. Technol. 38, 4012–4018 (2004)

    Google Scholar 

  41. Gupta, V.K., Sharma, S.: Removal of Cadmium and Zinc from aqueous solutions using red mud. Environ. Sci. Technol. 36, 3612–3617 (2002)

    Google Scholar 

  42. Jain, A.K., Gupta, V.K., Bhatnagar, A., Suhas: Utilization of industrial waste products as adsorbents for the removal of dyes. J. Hazard. Mater. B101, 31–42 (2003)

    Google Scholar 

  43. Gupta, V.K., Mittal, A., Krishnan, L., Gajbe, V.: Adsorption kinetics and column operations for the removal and recovery of malachite green from wastewater using bottom ash. Sep. Purif. Technol. 40, 87–96 (2004)

    Google Scholar 

  44. Gupta, V.K., Ali, I., Saini, V.K.: Adsorption studies on the removal of Vertigo Blue 49 and Orange DNA13 from aqueous solutions using carbon slurry developed from a waste material. J. Colloid Interface Sci. 315, 87–93 (2007)

    Google Scholar 

  45. Gupta, V.K., Srivastava, S.K., Mohan, D.: Equilibrium uptake, sorption dynamics, process optimization, and column operations for the removal and recovery of malachite green from wastewater using activated carbon and activated slag. Ind. Eng. Chem. Res. 36, 2207–2218 (1997)

    Google Scholar 

  46. Gupta, V.K., Ali, I., Sushas, Saini, V.K.: Adsorption of 2, 4-D and carbofuran pesticides using fertilize rand steel industry wastes. J. Colloid Interface Sci. 299, 556–563 (2006)

    Google Scholar 

  47. Gupta, V.K., Ali, I.: Removal of endosulfan and methoxychlor from water on carbon slurry. Environ. Sci. Technol. 42, 766–770 (2008)

    Google Scholar 

  48. Gupta, V.K., Rastogi, A., Nayak, A.: Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J. Colloid Interface Sci. 342, 135–141 (2010)

    Google Scholar 

  49. Gupta, V.K., Ali, I., Saini, V.K.: Defluoridation of wastewaters using waste carbon slurry. Water Res. 41, 3317–3326 (2007)

    Google Scholar 

  50. Gupta, V.K., Mittal, A., Jain, R., Mathur, M., Sikarwar, S.: Adsorption of Safranin-T from wastewater using waste materials–activated carbon and activated rice husk. J. Colloid Interface Sci. 303, 80–86 (2006)

    Google Scholar 

  51. Gupta, V.K., Jain, R., Varshney, S.: Removal of reactofix golden yellow 3 RFN from aqueous solution using wheat husk–an agricultural waste. J. Haz. Mat. 142, 443–448 (2007)

    Google Scholar 

  52. Gupta, V.K., Jain, R., Varshney, S., Saini, V.K.: Removal of reactofix Navy Blue 2 GFN from aqueous solutions using adsorption techniques. J.Colloid Interface Sci. 307, 326–332 (2007)

    Google Scholar 

  53. Gupta, V.K., Jain, C.K., Ali, I., Chandra, S., Agarwal, S.: Removal of lindane and malathion from wastewater using bagasse fly ash–a sugar industry waste. Water Res. 36, 2483–2490 (2002)

    Google Scholar 

  54. Gupta, V.K., Ali, I.: Removal of DDD and DDE from wastewater using bagasse fly ash, a sugar industry waste. Water Res. 35, 33–40 (2001)

    Google Scholar 

  55. Gupta, V.K., Mohan, D., Sharma, S., Park, K.T.: Removal of chromium (VI) from electroplating industry wastewater using bagasse fly ash–a sugar Industry waste material. Environmentalist 19, 129–136 (1999)

    Google Scholar 

  56. Ahmedna, M., Marshall, W.E., Rao, R.M.: Production of granular activated carbons from selected agricultural by-products and evaluation of their physical, chemical and adsorption properties. Bioresour. Technol. 71, 113–123 (2000)

    Google Scholar 

  57. Bulut, Y., Baysal, Z.: Removal of Pb(II) from wastewater using wheat bran. J. Environ. Manag. 78, 107–113 (2006)

    Google Scholar 

  58. Ajmal, M., Rao, R.A.K., Ahmad, R., Ahmad, J.: Adsorption studies on Citrus reticulate (fruit peel of orange): removal and recovery of Ni(II) from electroplating wastewater. J. Hazard. Mater. 79, 117–131 (2000)

    Google Scholar 

  59. Mittal, A., Gupta, V.K., Malviya, A., Mittal, J.: Process development for the batch and bulk removal and recovery of a hazardous, water-soluble azo dye (Metanil Yellow) by adsorption over waste materials (Bottom Ash an De-Oiled Soya). J. Hazard. Mater. 151, 821–832 (2008)

    Google Scholar 

  60. Mittal, A., Mittal, J., Malviya, A., Gupta, V.K.: Adsorptive removal of hazardous anionic dye “Congo red” from wastewater using waste materials and recovery by desorption. J. Colloid Interface Sci. 340, 16–26 (2009)

    Google Scholar 

  61. Mittal, A., Mittal, J., Malviya, A., Kaur, D., Gupta, V.K.: Decoloration treatment of a hazardous triarylmethane dye, light green SF (yellowish) by waste material adsorbents. J. Colloid Interface Sci. 342, 518–527 (2010)

    Google Scholar 

  62. Mittal, A., Mittal, J., Malviya, A., Gupta, V.K.: Removal and recovery of Chrysoidine Y from aqueous solution by waste materials. J. Colloid Interface Sci. 344, 497–507 (2010)

    Google Scholar 

  63. Gupta, V.K., Ali, I., Saini, V.K., Van Gerven, T., Van der Bruggen, B., Vandecasteele, C.: Removal of dyes from wastewater using bottom ash. Ind. Engg. Chem. Res. 44, 3655–3664 (2005)

    Google Scholar 

  64. Mittal, A., Kaur, D., Malviya, A., Mittal, J., Gupta, V.K.: Adsorption studies on the removal of colouring agent phenol red from wastewater using waste materials as adsorbents. J. Colloid Interface Sci. 337, 345–354 (2009)

    Google Scholar 

  65. Gupta, V.K., Mittal, A., Malviya, A., Mittal, J.: Adsorption of Carmoisine A from wastewater using waste materials–bottom ash and de-oiled soya. J. Colloid Interface Sci. 355, 24–33 (2009)

    Google Scholar 

  66. Gupta, V.K., Mittal, A., Gajbe, V., Mittal, J.: Adsorption of basic fuchsin using waste materials–bottom ash and de-oiled soya as adsorbents. J. Colloid Interface Sci. 319, 30–39 (2008)

    Google Scholar 

  67. Jain, A.K., Gupta, V.K., Bhatnagar, A., Shubhi, J., Suhas, : A comparative assessment of adsorbents prepared from industrial wastes for the removal of cationic dye. J. Indian Chem. Soc. 80, 267–270 (2003)

    Google Scholar 

  68. Allen, S.J., Koumanova, B.: Decolourisation of water/wastewater using adsorption (Review). J. University Chem. Tech. Metal. 40, 175–192 (2005)

    Google Scholar 

  69. Parande A.K., Sivashanmugam A., Beulah H., Palaniswamy N.: Performance evaluation of low cost adsrobents in reduction of COD in sugar industrial effluent. J. Hazard. Mater. 168, 800–805 (2009). doi:10.1016/j.jhazmat.2009.02.098

  70. Bansal, R.C., Donet, J.-B., Fritz, S.: Active Carbon. Marcel Dekker, New York. (1988)

    Google Scholar 

  71. Carrott, P.J.M., Ribeiro Carrott, M.M.L., Mourao, P.A.M., Lima, R.P.: Preparation of activated carbons from cork by physical activation in carbon dioxide. Adsorpt. Sci. Technol. 21, 669–681 (2003)

    Google Scholar 

  72. Carrott, P.J.M., Mourao, P.A.M., Ribeiro Carrott, M.M.L., Goncalves, E.M.: Separating surface and solvent effects and the notion of critical adsorption energy in the adsorption of phenolic compounds by activated carbons. Langmuir 21, 11863–11869 (2005)

    Google Scholar 

  73. Hassler, J.W.: Activated Carbon. Chemical Publishing Company, Inc., New York. (1963)

    Google Scholar 

  74. Lillo-Rodenas, M.A., Marco-Lozar, J.P., Cazorla-Amoros, D., Linares-Solano, A.: Activated carbons prepared by pyrolysis of mixtures of carbon precursor/alkaline hydroxide. J. Anal. Appl Pyrolysis 80, 166–174 (2007)

    Google Scholar 

  75. Bansal, R.C., Goyal, M.: Activated Carbon Adsorption. Taylor & Francis Group, Boca Raton. (2005)

    Google Scholar 

  76. Phan, N.H., Rio, S., Faur, C., Le Coq, L., Le Cloirec, P., Nguyen, T.H.: Production of fibrous activated carbons from natural cellulose (jute, coconut) fibers for water treatment applications. Carbon 44, 2569–2577 (2006)

    Google Scholar 

  77. Kurniawan, T.A., Chan, G.Y.S., Lo, W.-H., Badel, S.: Comparisons of low-cost adsrobents for treating wastewaters laden with heavy metals. Sci. Total Environ. 366, 409–426 (2006)

    Google Scholar 

  78. Weber Jr., W.J., Hopkins, C.B., Bloom Jr., R.: Physicochemical treatment of wastewater. J. Water Pollut. Control Fed. 42, 83–89 (1970)

  79. Najm, I.N., Snoeyink, V.L., Lykins, B.W.J., Adams, J.Q.: Using powdered activated carbon: a critical review. J. Am. Water Works Assoc. 83, 65–76 (1991)

    Google Scholar 

  80. Stenzel, M.H.: Remove organics by activated carbon adsorption. In: Nalven, G.F. (ed.) Practical Engineering Percpectives The Environment: Air-Water and Soil, pp. 237–244. American Institute of Chemical Engineers, New York (1997)

    Google Scholar 

  81. David, A.P., Huang, C.P.: Adsorption of some substituted phenols onto hydrous CdS(s). Langmuir 6, 857–862 (1990)

    Google Scholar 

  82. Liu, J.C., Huang, C.P.: Adsorption of some substituted phenols onto hydrous ZnS(s). J. Colloid Interface Sci. 153, 167–176 (1992)

    Google Scholar 

  83. Pollard, S.J.T., Christopher, S.J., Rogger, P.: A clay carbon absorbent derived from spent bleaching earth: surface characterization and absorption of chlorophenols from aqueous solution. Carbon 30, 639–646 (1992)

    Google Scholar 

  84. Haderlein, S.B., Schwarzenbach, C.J., Perry, R.: Adsorption of substituted nitrobenzenes and nitro-phenols to mineral surfaces. Environ. Sci. Technol. 27, 316–326 (1993)

    Google Scholar 

  85. Reddy, K.R.: Removal of dialkylphenols from aqueous effuents by selective absorption in a novel, large pore, silica molecular sieve. J. Chem. Soc. Chem. Comm. 24, 559–560 (1993)

    Google Scholar 

  86. Dentel, S.K., Bottero, J.Y., Khatib, K., Demougeot, H., Duguet, J.P., Anselme, C.: Sorption of tannic acid, phenol and 2, 4, 5-trichlorophenol on organoclays. Water Res. 29, 1273–1280 (1995)

    Google Scholar 

  87. Streat, M., Patrick, J.W., Perez Comparro, M.J.: Sorption of phenol and p-chlorophenol from water using conventional and novel activated carbons. Water Res. 29, 467–472 (1995)

    Google Scholar 

  88. Daifullah, A.E., Reefy, S.E., Gad, H.: Adsorption of p-nitrophenol on inshas incinerator ash and on pyrolysis residue of animal bones. Adsor. Sci. Technol. 15, 485–496 (1997)

    Google Scholar 

  89. Gupta, V.K., Sharama, S., Yadav, I.S., Mohan, D.: Utilization of bagasse fly ash generated in the sugar industry for the removal and recovery of phenol and p-nitrophenol from wastewater. J. Chem. Technol. Biotechnol. 71, 180–186 (1998)

    Google Scholar 

  90. Jashni, A.K., Narbaitz, R.M.: Impact of pH on the adsorption and desorption of kinetics of 2-nitro-phenol on activated carbons. Water Res. 31, 3039–3044 (1997)

    Google Scholar 

  91. Gupta, V.K., Srivastava, S.K., Tyagi, R.: Design parameters for the treatment of phenolic wastes by carbon columns (obtained from fertelizer waste material). Water Res. 34, 1543–1550 (2000)

    Google Scholar 

  92. Gupta, V.K., Ali, I.: Adsorbents for water treatment: Low cost alternatives to carbon. Encyclopedia of Surface and Colloid Science, 2nd edn, pp. 1–34 (2003)

  93. Bailey, S.E., Olin, T.J., Bricka, R.M., Adrian, D.D.: A review of potentially low-cost sorbents for heavy metals. Water Res. 33, 2469–2479 (1999)

    Google Scholar 

  94. Webi, T.W., Chakravort, R.K.: Pore and solid diffusion models for fixed-bed adsorbers. AIChE J. 20, 228–238 (1974)

    Google Scholar 

  95. Babu, B.V., Gupta, S.: Modeling and simulation of fixed bed adsorption column: effect of velocity variation. J. Eng. Technol. 1, 60–66 (2005)

    Google Scholar 

  96. Bohart, G., Adams, E.: Some aspects of the behavior of charcoal with respect to chlorine. J. Am. Chem. Soc. 42, 523–545 (1920)

    Google Scholar 

  97. Cooney, D.O.: Adsorption Design for Wastewater Treatment. Lewis Publishers, Boca Raton, Florida (1999)

    Google Scholar 

  98. Clark, S.C., Lawler, D.F., Cushing, R.S.: Contact filtration: particle size and ripening. J. Am. Water Works Assoc. 84, 61–71 (1992)

    Google Scholar 

  99. McKay, G.: Use of Adsorbents for the Removal of Pollutants from Wastewaters. CRC Press, Boca Raton, Florida (1996)

    Google Scholar 

  100. Clark, S., Brown, P., Pitt, R.: Wastewater treatment using low-cost adsorbents and waste material. Proc. Water Environ. Fed. Ind. Waste 24, 11–34 (2000)

    Google Scholar 

  101. Park, D., Yun, Y.S., Lim, S.R., Park, J.M.: Kinetic analysis and mathematical modeling of Cr(VI) removal in a differential reactor packed with ecklonia biomass. J. Microbiol. Biotechnol. 16, 1720–1727 (2006)

    Google Scholar 

  102. Aksu, Z., Acikel, U., Kutsal, T.: Investigation of simultaneous biosorption of copper (II) and chromium (VI) on dried chlorella vulgaris from binary metal mixtures: application of multicomponent adsorption isotherms. Sep. Sci. Technol. 34, 501–524 (1999)

    Google Scholar 

  103. Ho, Y., Huang, C.T., Haung, H.W.: Equilibrium sorption isotherm for metal ions on tree fern. Process Biochem 37, 1421–1430 (2002)

    Google Scholar 

  104. Ho, Y.S., Mckay, G.: The kinetics of sorption of basic dyes from aqueous solution by sphagnum moss peat. Can. J. Chem. Eng. 76, 822–827 (1998)

    Google Scholar 

  105. Yu, B., Zhang, Y., Shukla, A., Shukla, S., Dorris, K.L.: The removal of heavy metals from aqueous solutions by sawdust adsorption–removal of lead and comparison of its adsorption with koper. J. Hazard. Mater. 84, 83–94 (2001)

    Google Scholar 

  106. Stadelman, W.J.: Eggs and egg products. In: Francis, F.J. (ed.) Encyclopedia of Food Science and Technology, pp. 593–599. John Wiley & Sons, New York (2000)

    Google Scholar 

  107. Poland, A.L., Sheldon, B.W.: Altering the thermal resistance of foodborne bacterial pathogens with an eggshell membrane waste by-product. J. Food Prot. 64, 486–492 (2001)

    Google Scholar 

  108. Tacon, A.G.J.: Utilisation of chick hatchery waste: the nutritional characteristics of day-old chicks and egg shells. Agric. Wastes 4, 335–343 (1982)

    Google Scholar 

  109. Kuh, S.E., Kim, D.S.: Removal characteristics of cadmium ion by waste egg shell. Environ. Technol. 21, 883–890 (2000)

    Google Scholar 

  110. Chojnacka, K.: Biosorption of Cr(III) ions by eggshells. J. Hazard. Mater. 121, 167–173 (2005)

    Google Scholar 

  111. Koumanova, B., Peeva, P., Allen, S.J., Gallagher, K.A., Healy, M.G.: Biosorption from aqueous solutions by eggshell membranes and Rhizopus oryzae: equilibrium and kinetic studies. J. Chem. Technol. Biotechnol. 77, 539–545 (2002)

    Google Scholar 

  112. Vijayaraghavan, K., Jegan, J., Jegan, J., Jegan, J.: Removal and recovery of copper from aqueous solution by eggshell in a packed column. Miner. Eng. 18, 545–547 (2005)

    Google Scholar 

  113. Tullett, S.G.: Egg shell formation and quality. In: Wells, R.G., Belyavin, C.G. (eds.) Egg Quality—Current Problems and Recent Advances, pp. 123–146. Butterworths, London (1987)

    Google Scholar 

  114. Parsons, A.H.: Structure of the eggshell. Poult. Sci. 61, 2013–2021 (1982)

    Google Scholar 

  115. Nakano, T., Ikawa, N.I., Ozimek, L.: Chemical composition of chicken eggshell and shell membranes. Poult. Sci. 82, 510–514 (2003)

    Google Scholar 

  116. Tsai, W.T., Yang, J.M., Lai, C.W., Cheng, Y.H., Lin, C.C., Yeh, C.W.: Characterisation and adsorption properties of eggshells and eggshell membrane. Bioresour. Technol. 97, 488–493 (2006)

    Google Scholar 

  117. Suyama, K., Fukazawa, Y., Umetsu, Y.: A new biomaterial, hen egg shell membrane, to eliminate heavy metal ion from their dilute waste solution. Appl. Biochem. Biotechnol. 45, 871–879 (1994)

    Google Scholar 

  118. Ishikawa, S.I., Suyama, K.: Recovery and refining of Au by gold-cyanide ion biosorption using animal fibrous proteins. Appl. Biochem. Biotechnol. 70, 719–728 (1998)

    Google Scholar 

  119. Allen, S.J., Gan, Q., Matthews, R., Johnson, P.A.: Comparison of optimised isotherm models for basic dye adsorption by kudzu. Bioresour. Technol. 88, 143–152 (2003)

    Google Scholar 

  120. Gota, M., Suyama, K.: Occlusion of transition ions by new adsorbents synthesized from plant polyphenols and animal fibrous proteins. Appl. Biochem. Biotechnol. 84–86, 1021–1038 (2000)

    Google Scholar 

  121. Ishikawa, S.I., Suyama, K., Arihara, K., Itoh, M.: Selective recovery of uranium and thorium ions from dilute aqueous solutions by animal biopolymers. Biol. Trace Elem. Res. 86, 227–236 (2002)

    Google Scholar 

  122. Ishikawa, S.I., Suyama, K., Arihara, K., Itoh, M.: Uptake and recovery of gold ions from electroplating wastes using eggshell membrane. Bioresour. Technol. 81, 201–206 (2002)

    Google Scholar 

  123. Xiao, D., Choi, M.M.F.: Aspartame optical biosensor with bienzyme-immobilized eggshell membrane and oxygen-sensitive optode membrane. Anal. Chem. 74, 863–870 (2002)

    Google Scholar 

  124. Yang, D., Qi, L., Ma, J.: Hierarchically ordered networks comprising crystalline ZrO2 tubes through sol–gel mineralization of eggshell membranes. J. Mater. Chem. 13, 1119–1123 (2003)

    Google Scholar 

  125. Choi, M.M.F., Yiu, T.P.: Immobilization of beef liver catalase on eggshell membrane for fabrication of hydrogen peroxide biosensor. Enzyme Microb. Technol. 34, 41–47 (2004)

    Google Scholar 

  126. Dean, J.A. In: McGraw-Hill (ed). Langes Handbook of Chemistry. pp. 4–33. New York (1987)

  127. Busca G., Resini, C. In: Meyers, R.A. (ed). Vibrational spectroscopy for the analyses of geological and inorganic materials. Encyclopedia of Analytical Chemistry. pp. 10954–11008. Wiley, Chichester (2000)

  128. Christmas, R.B., Harms, R.H.: Utilization of egg shells and phosphoric acids as a source of phosphorus and calcium in the diet of White Leghorn cockerels. Poult. Sci. 55, 264–267 (1976)

    Google Scholar 

  129. Rivera, E.M., Araiza, M., Brostow, W., Castano, V.M., Diaz-Estrada, J.R., Hernandez, R., Rodriguez, J.R.: Synthesis of hydroxyapatite from eggshells. Mater. Lett. 41, 128–134 (1999)

    Google Scholar 

  130. Rauch, W.: The influence of egg-shell porosity on the number of chickens hatched from incubating eggs. Poult. Sci. 31, 589–594 (1952)

    Google Scholar 

  131. Creger, C.R., Phillips, H., Scott, J.T.: Formation of an egg shell. Poult. Sci. 55, 1717–1723 (1976)

    Google Scholar 

  132. Garcia-Ruiz, J.M., Navarro, A.R., Kalin, O.: Textural analysis of eggshells. Mater. Sci. Eng. C3, 95–100 (1995)

    Google Scholar 

  133. Shoji, R., Miyazaki, T., Niinou, T., Kato, M., Ishii, H.: Recovery of gold by chicken egg shell membrane-conjugated chitosan beads. J. Mater. Cycles Waste Manag. 6, 142–146 (2004)

    Google Scholar 

  134. Ishikawa, S., Suyama, K., Satoh, I.: Biosorption of actinides from dilute waste actinide solution by egg-shell membrane. Appl. Biochem. Biotechnol. 77, 521–533 (1999)

    Google Scholar 

  135. Pramanpol, N., Nitayapat, N.: Adsorption of reactive dye by eggshell and its membrane. Kasetsart J. Nat. Sci. 40, 192–197 (2006)

    Google Scholar 

  136. Maruyama, T., Matsushita, H., Shimada, Y., Kamata, Y., Hanaki, M., Sonokawa, S., Kamiya, N., Goto, M.: Proteins and protein-rich biomass as environmentally friendly adsorbents selective for precious metal ions. Environ. Sci. Technol. 41, 1359–1364 (2007)

    Google Scholar 

  137. Tsai, W.T., Hsien, K.-J., Hsu, H.-C., Lin, C.-M., Lin, C.-M., Chiu, C.H.: Utilisation of ground eggshell waste as an adsorbent for the removal of dyes from aqueous solution. Bioresour. Technol. 99, 1623–1629 (2009)

    Google Scholar 

  138. Ghani, A.A., Santiagoo R., Johnson, A.C., Ibrahim, N., Selamat, S.: Dye removal from aqueous solution using egg shell powder. Proceedings Book. 1st International Conference on Sustainable Materials (IcoSM), pp. 109–111 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Carvalho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carvalho, J., Araujo, J. & Castro, F. Alternative Low-cost Adsorbent for Water and Wastewater Decontamination Derived from Eggshell Waste: An Overview. Waste Biomass Valor 2, 157–167 (2011). https://doi.org/10.1007/s12649-010-9058-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12649-010-9058-y

Keywords

Navigation